Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpart2 | |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-part | |- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) |
|
2 | df-dmqs | |- ( R DomainQs A <-> ( dom R /. R ) = A ) |
|
3 | 2 | anbi2i | |- ( ( Disj R /\ R DomainQs A ) <-> ( Disj R /\ ( dom R /. R ) = A ) ) |
4 | 1 3 | bitri | |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) |