Metamath Proof Explorer


Theorem br1cossincnvepres

Description: B and C are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion br1cossincnvepres B V C W B R E -1 A C u A B u u R B C u u R C

Proof

Step Hyp Ref Expression
1 br1cossinres B V C W B R E -1 A C u A u E -1 B u R B u E -1 C u R C
2 brcnvep u V u E -1 B B u
3 2 elv u E -1 B B u
4 3 anbi1i u E -1 B u R B B u u R B
5 brcnvep u V u E -1 C C u
6 5 elv u E -1 C C u
7 6 anbi1i u E -1 C u R C C u u R C
8 4 7 anbi12i u E -1 B u R B u E -1 C u R C B u u R B C u u R C
9 8 rexbii u A u E -1 B u R B u E -1 C u R C u A B u u R B C u u R C
10 1 9 bitrdi B V C W B R E -1 A C u A B u u R B C u u R C