Metamath Proof Explorer


Theorem br1cossincnvepres

Description: B and C are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion br1cossincnvepres ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢𝐴 ( ( 𝐵𝑢𝑢 𝑅 𝐵 ) ∧ ( 𝐶𝑢𝑢 𝑅 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 br1cossinres ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢𝐴 ( ( 𝑢 E 𝐵𝑢 𝑅 𝐵 ) ∧ ( 𝑢 E 𝐶𝑢 𝑅 𝐶 ) ) ) )
2 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝐵𝐵𝑢 ) )
3 2 elv ( 𝑢 E 𝐵𝐵𝑢 )
4 3 anbi1i ( ( 𝑢 E 𝐵𝑢 𝑅 𝐵 ) ↔ ( 𝐵𝑢𝑢 𝑅 𝐵 ) )
5 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝐶𝐶𝑢 ) )
6 5 elv ( 𝑢 E 𝐶𝐶𝑢 )
7 6 anbi1i ( ( 𝑢 E 𝐶𝑢 𝑅 𝐶 ) ↔ ( 𝐶𝑢𝑢 𝑅 𝐶 ) )
8 4 7 anbi12i ( ( ( 𝑢 E 𝐵𝑢 𝑅 𝐵 ) ∧ ( 𝑢 E 𝐶𝑢 𝑅 𝐶 ) ) ↔ ( ( 𝐵𝑢𝑢 𝑅 𝐵 ) ∧ ( 𝐶𝑢𝑢 𝑅 𝐶 ) ) )
9 8 rexbii ( ∃ 𝑢𝐴 ( ( 𝑢 E 𝐵𝑢 𝑅 𝐵 ) ∧ ( 𝑢 E 𝐶𝑢 𝑅 𝐶 ) ) ↔ ∃ 𝑢𝐴 ( ( 𝐵𝑢𝑢 𝑅 𝐵 ) ∧ ( 𝐶𝑢𝑢 𝑅 𝐶 ) ) )
10 1 9 bitrdi ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( E ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢𝐴 ( ( 𝐵𝑢𝑢 𝑅 𝐵 ) ∧ ( 𝐶𝑢𝑢 𝑅 𝐶 ) ) ) )