Metamath Proof Explorer


Theorem erclwwlk

Description: .~ is an equivalence relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r
|- .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) }
Assertion erclwwlk
|- .~ Er ( ClWWalks ` G )

Proof

Step Hyp Ref Expression
1 erclwwlk.r
 |-  .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) }
2 1 erclwwlkrel
 |-  Rel .~
3 1 erclwwlksym
 |-  ( x .~ y -> y .~ x )
4 1 erclwwlktr
 |-  ( ( x .~ y /\ y .~ z ) -> x .~ z )
5 1 erclwwlkref
 |-  ( x e. ( ClWWalks ` G ) <-> x .~ x )
6 2 3 4 5 iseri
 |-  .~ Er ( ClWWalks ` G )