Database GRAPH THEORY Walks, paths and cycles Closed walks as words Closed walks as words erclwwlk  
				
		 
		
			
		 
		Description:   .~  is an equivalence relation over the set of closed walks (defined
       as words).  (Contributed by Alexander van der Vekens , 10-Apr-2018) 
       (Revised by AV , 30-Apr-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						erclwwlk.r ⊢   ∼    =  { 〈 𝑢  ,  𝑤  〉  ∣  ( 𝑢   ∈  ( ClWWalks ‘ 𝐺  )  ∧  𝑤   ∈  ( ClWWalks ‘ 𝐺  )  ∧  ∃ 𝑛   ∈  ( 0 ... ( ♯ ‘ 𝑤  ) ) 𝑢   =  ( 𝑤   cyclShift  𝑛  ) ) }  
				
					Assertion 
					erclwwlk ⊢    ∼    Er  ( ClWWalks ‘ 𝐺  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							erclwwlk.r ⊢   ∼    =  { 〈 𝑢  ,  𝑤  〉  ∣  ( 𝑢   ∈  ( ClWWalks ‘ 𝐺  )  ∧  𝑤   ∈  ( ClWWalks ‘ 𝐺  )  ∧  ∃ 𝑛   ∈  ( 0 ... ( ♯ ‘ 𝑤  ) ) 𝑢   =  ( 𝑤   cyclShift  𝑛  ) ) }  
						
							2 
								1 
							 
							erclwwlkrel ⊢  Rel   ∼    
						
							3 
								1 
							 
							erclwwlksym ⊢  ( 𝑥   ∼   𝑦   →  𝑦   ∼   𝑥  )  
						
							4 
								1 
							 
							erclwwlktr ⊢  ( ( 𝑥   ∼   𝑦   ∧  𝑦   ∼   𝑧  )  →  𝑥   ∼   𝑧  )  
						
							5 
								1 
							 
							erclwwlkref ⊢  ( 𝑥   ∈  ( ClWWalks ‘ 𝐺  )  ↔  𝑥   ∼   𝑥  )  
						
							6 
								2  3  4  5 
							 
							iseri ⊢   ∼    Er  ( ClWWalks ‘ 𝐺  )