| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r | ⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) } | 
						
							| 2 |  | anidm | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ↔  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 3 | 2 | anbi1i | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 | 5 | clwwlkbp | ⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 7 |  | cshw0 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑥  cyclShift  0 )  =  𝑥 ) | 
						
							| 8 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ∈  ℕ0 ) | 
						
							| 10 |  | lencl | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 11 |  | hashge0 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 12 |  | elfz2nn0 | ⊢ ( 0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ↔  ( 0  ∈  ℕ0  ∧  ( ♯ ‘ 𝑥 )  ∈  ℕ0  ∧  0  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 13 | 9 10 11 12 | syl3anbrc | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 14 |  | eqcom | ⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  ↔  𝑥  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 15 | 14 | biimpi | ⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  →  𝑥  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 17 | 16 | rspceeqv | ⊢ ( ( 0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ∧  𝑥  =  ( 𝑥  cyclShift  0 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 18 | 13 15 17 | syl2an | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑥  cyclShift  0 )  =  𝑥 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 19 | 7 18 | mpdan | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 21 | 6 20 | syl | ⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 22 | 21 | pm4.71i | ⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 23 | 3 4 22 | 3bitr4ri | ⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 24 | 1 | erclwwlkeq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 25 | 24 | el2v | ⊢ ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 26 | 23 25 | bitr4i | ⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑥  ∼  𝑥 ) |