Metamath Proof Explorer


Theorem clwwlkbp

Description: Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypothesis clwwlkbp.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clwwlkbp ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 clwwlkbp.v 𝑉 = ( Vtx ‘ 𝐺 )
2 elfvex ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝐺 ∈ V )
3 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
4 1 3 isclwwlk ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
5 4 simp1bi ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) )
6 3anass ( ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) ↔ ( 𝐺 ∈ V ∧ ( 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) ) )
7 2 5 6 sylanbrc ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) )