Metamath Proof Explorer


Theorem clwwlkbp

Description: Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypothesis clwwlkbp.v V=VtxG
Assertion clwwlkbp WClWWalksGGVWWordVW

Proof

Step Hyp Ref Expression
1 clwwlkbp.v V=VtxG
2 elfvex WClWWalksGGV
3 eqid EdgG=EdgG
4 1 3 isclwwlk WClWWalksGWWordVWi0..^W1WiWi+1EdgGlastSWW0EdgG
5 4 simp1bi WClWWalksGWWordVW
6 3anass GVWWordVWGVWWordVW
7 2 5 6 sylanbrc WClWWalksGGVWWordVW