Metamath Proof Explorer


Theorem clwwlkbp

Description: Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypothesis clwwlkbp.v
|- V = ( Vtx ` G )
Assertion clwwlkbp
|- ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word V /\ W =/= (/) ) )

Proof

Step Hyp Ref Expression
1 clwwlkbp.v
 |-  V = ( Vtx ` G )
2 elfvex
 |-  ( W e. ( ClWWalks ` G ) -> G e. _V )
3 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
4 1 3 isclwwlk
 |-  ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) )
5 4 simp1bi
 |-  ( W e. ( ClWWalks ` G ) -> ( W e. Word V /\ W =/= (/) ) )
6 3anass
 |-  ( ( G e. _V /\ W e. Word V /\ W =/= (/) ) <-> ( G e. _V /\ ( W e. Word V /\ W =/= (/) ) ) )
7 2 5 6 sylanbrc
 |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word V /\ W =/= (/) ) )