Description: Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwwlkbp.v | |- V = ( Vtx ` G ) |
|
Assertion | clwwlkbp | |- ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word V /\ W =/= (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkbp.v | |- V = ( Vtx ` G ) |
|
2 | elfvex | |- ( W e. ( ClWWalks ` G ) -> G e. _V ) |
|
3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
4 | 1 3 | isclwwlk | |- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
5 | 4 | simp1bi | |- ( W e. ( ClWWalks ` G ) -> ( W e. Word V /\ W =/= (/) ) ) |
6 | 3anass | |- ( ( G e. _V /\ W e. Word V /\ W =/= (/) ) <-> ( G e. _V /\ ( W e. Word V /\ W =/= (/) ) ) ) |
|
7 | 2 5 6 | sylanbrc | |- ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word V /\ W =/= (/) ) ) |