| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r | ⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) } | 
						
							| 2 | 1 | erclwwlkeqlen | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 3 | 1 | erclwwlkeq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) ) ) | 
						
							| 4 |  | simpl2 | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 | 6 | clwwlkbp | ⊢ ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 8 | 7 | simp2d | ⊢ ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 11 | 9 10 | cshwcshid | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 12 | 11 | expd | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 13 | 12 | rexlimdv | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 16 | 15 | 3impia | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 21 | 17 20 | sylibr | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 22 | 4 5 21 | 3jca | ⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 23 | 1 | erclwwlkeq | ⊢ ( ( 𝑦  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 24 | 23 | ancoms | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 25 | 22 24 | imbitrrid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∼  𝑥 ) ) | 
						
							| 26 | 25 | expd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  𝑦  ∼  𝑥 ) ) ) | 
						
							| 27 | 3 26 | sylbid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  𝑦  ∼  𝑥 ) ) ) | 
						
							| 28 | 2 27 | mpdd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  𝑦  ∼  𝑥 ) ) | 
						
							| 29 | 28 | el2v | ⊢ ( 𝑥  ∼  𝑦  →  𝑦  ∼  𝑥 ) |