Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlk.r |
⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) } |
2 |
1
|
erclwwlkeq |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑈 ∼ 𝑊 ↔ ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑈 = ( 𝑊 cyclShift 𝑛 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑛 ) ) ) |
4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
5 |
4
|
clwwlkbp |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ) |
6 |
5
|
simp2d |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
8 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑛 ∈ ℤ ) |
9 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑛 ) ) = ( ♯ ‘ 𝑊 ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) ∧ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑛 ) ) = ( ♯ ‘ 𝑊 ) ) |
11 |
3 10
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) ∧ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑈 = ( 𝑊 cyclShift 𝑛 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) |
12 |
11
|
rexlimdva2 |
⊢ ( ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) |
13 |
12
|
ex |
⊢ ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
14 |
13
|
com23 |
⊢ ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) → ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
15 |
14
|
3impia |
⊢ ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) ) → ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) |
16 |
15
|
com12 |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ( 𝑈 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈 = ( 𝑊 cyclShift 𝑛 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) |
17 |
2 16
|
sylbid |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑈 ∼ 𝑊 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) ) |