| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r | ⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) } | 
						
							| 2 | 1 | erclwwlkeq | ⊢ ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( 𝑈  ∼  𝑊  ↔  ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑈  =  ( 𝑊  cyclShift  𝑛 )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 5 | 4 | clwwlkbp | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 6 | 5 | simp2d | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 8 |  | elfzelz | ⊢ ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 9 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑛 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 ) )  ∧  𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑛 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 11 | 3 10 | sylan9eqr | ⊢ ( ( ( ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 ) )  ∧  𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  ∧  𝑈  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 12 | 11 | rexlimdva2 | ⊢ ( ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 )  →  ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 15 | 14 | 3impia | ⊢ ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 17 | 2 16 | sylbid | ⊢ ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( 𝑈  ∼  𝑊  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) ) |