| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r | ⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) } | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑈  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑈  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 4 |  | eleq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( 𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ... ( ♯ ‘ 𝑤 ) )  =  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( 0 ... ( ♯ ‘ 𝑤 ) )  =  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  𝑢  =  𝑈 ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  cyclShift  𝑛 )  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( 𝑤  cyclShift  𝑛 )  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( 𝑢  =  ( 𝑤  cyclShift  𝑛 )  ↔  𝑈  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 13 | 8 12 | rexeqbidv | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 14 | 3 5 13 | 3anbi123d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑤  =  𝑊 )  →  ( ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) )  ↔  ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) ) ) ) | 
						
							| 15 | 14 1 | brabga | ⊢ ( ( 𝑈  ∈  𝑋  ∧  𝑊  ∈  𝑌 )  →  ( 𝑈  ∼  𝑊  ↔  ( 𝑈  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) 𝑈  =  ( 𝑊  cyclShift  𝑛 ) ) ) ) |