| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r |  |-  .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } | 
						
							| 2 |  | eleq1 |  |-  ( u = U -> ( u e. ( ClWWalks ` G ) <-> U e. ( ClWWalks ` G ) ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( u = U /\ w = W ) -> ( u e. ( ClWWalks ` G ) <-> U e. ( ClWWalks ` G ) ) ) | 
						
							| 4 |  | eleq1 |  |-  ( w = W -> ( w e. ( ClWWalks ` G ) <-> W e. ( ClWWalks ` G ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( u = U /\ w = W ) -> ( w e. ( ClWWalks ` G ) <-> W e. ( ClWWalks ` G ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( w = W -> ( 0 ... ( # ` w ) ) = ( 0 ... ( # ` W ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( u = U /\ w = W ) -> ( 0 ... ( # ` w ) ) = ( 0 ... ( # ` W ) ) ) | 
						
							| 9 |  | simpl |  |-  ( ( u = U /\ w = W ) -> u = U ) | 
						
							| 10 |  | oveq1 |  |-  ( w = W -> ( w cyclShift n ) = ( W cyclShift n ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( u = U /\ w = W ) -> ( w cyclShift n ) = ( W cyclShift n ) ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( ( u = U /\ w = W ) -> ( u = ( w cyclShift n ) <-> U = ( W cyclShift n ) ) ) | 
						
							| 13 | 8 12 | rexeqbidv |  |-  ( ( u = U /\ w = W ) -> ( E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) <-> E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) ) | 
						
							| 14 | 3 5 13 | 3anbi123d |  |-  ( ( u = U /\ w = W ) -> ( ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) <-> ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) ) ) | 
						
							| 15 | 14 1 | brabga |  |-  ( ( U e. X /\ W e. Y ) -> ( U .~ W <-> ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) ) ) |