Metamath Proof Explorer


Theorem erclwwlkeq

Description: Two classes are equivalent regarding .~ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
Assertion erclwwlkeq UXWYU˙WUClWWalksGWClWWalksGn0WU=WcyclShiftn

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
2 eleq1 u=UuClWWalksGUClWWalksG
3 2 adantr u=Uw=WuClWWalksGUClWWalksG
4 eleq1 w=WwClWWalksGWClWWalksG
5 4 adantl u=Uw=WwClWWalksGWClWWalksG
6 fveq2 w=Ww=W
7 6 oveq2d w=W0w=0W
8 7 adantl u=Uw=W0w=0W
9 simpl u=Uw=Wu=U
10 oveq1 w=WwcyclShiftn=WcyclShiftn
11 10 adantl u=Uw=WwcyclShiftn=WcyclShiftn
12 9 11 eqeq12d u=Uw=Wu=wcyclShiftnU=WcyclShiftn
13 8 12 rexeqbidv u=Uw=Wn0wu=wcyclShiftnn0WU=WcyclShiftn
14 3 5 13 3anbi123d u=Uw=WuClWWalksGwClWWalksGn0wu=wcyclShiftnUClWWalksGWClWWalksGn0WU=WcyclShiftn
15 14 1 brabga UXWYU˙WUClWWalksGWClWWalksGn0WU=WcyclShiftn