| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r |  |-  .~ = { <. u , w >. | ( u e. ( ClWWalks ` G ) /\ w e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` w ) ) u = ( w cyclShift n ) ) } | 
						
							| 2 | 1 | erclwwlkeq |  |-  ( ( U e. X /\ W e. Y ) -> ( U .~ W <-> ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( U = ( W cyclShift n ) -> ( # ` U ) = ( # ` ( W cyclShift n ) ) ) | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 | 4 | clwwlkbp |  |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) ) | 
						
							| 6 | 5 | simp2d |  |-  ( W e. ( ClWWalks ` G ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 7 | 6 | ad2antlr |  |-  ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 8 |  | elfzelz |  |-  ( n e. ( 0 ... ( # ` W ) ) -> n e. ZZ ) | 
						
							| 9 |  | cshwlen |  |-  ( ( W e. Word ( Vtx ` G ) /\ n e. ZZ ) -> ( # ` ( W cyclShift n ) ) = ( # ` W ) ) | 
						
							| 10 | 7 8 9 | syl2an |  |-  ( ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) /\ n e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W cyclShift n ) ) = ( # ` W ) ) | 
						
							| 11 | 3 10 | sylan9eqr |  |-  ( ( ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) /\ n e. ( 0 ... ( # ` W ) ) ) /\ U = ( W cyclShift n ) ) -> ( # ` U ) = ( # ` W ) ) | 
						
							| 12 | 11 | rexlimdva2 |  |-  ( ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) /\ ( U e. X /\ W e. Y ) ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( # ` U ) = ( # ` W ) ) ) | 
						
							| 13 | 12 | ex |  |-  ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) -> ( ( U e. X /\ W e. Y ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( # ` U ) = ( # ` W ) ) ) ) | 
						
							| 14 | 13 | com23 |  |-  ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) ) -> ( E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) -> ( ( U e. X /\ W e. Y ) -> ( # ` U ) = ( # ` W ) ) ) ) | 
						
							| 15 | 14 | 3impia |  |-  ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) -> ( ( U e. X /\ W e. Y ) -> ( # ` U ) = ( # ` W ) ) ) | 
						
							| 16 | 15 | com12 |  |-  ( ( U e. X /\ W e. Y ) -> ( ( U e. ( ClWWalks ` G ) /\ W e. ( ClWWalks ` G ) /\ E. n e. ( 0 ... ( # ` W ) ) U = ( W cyclShift n ) ) -> ( # ` U ) = ( # ` W ) ) ) | 
						
							| 17 | 2 16 | sylbid |  |-  ( ( U e. X /\ W e. Y ) -> ( U .~ W -> ( # ` U ) = ( # ` W ) ) ) |