| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlk.r | ⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) } | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 4 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 5 | 1 | erclwwlkeqlen | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 7 | 1 | erclwwlkeqlen | ⊢ ( ( 𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  →  ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  →  ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 9 | 1 | erclwwlkeq | ⊢ ( ( 𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  ↔  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  ↔  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 11 | 1 | erclwwlkeq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) ) ) | 
						
							| 13 |  | simpr1 | ⊢ ( ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  ∧  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) )  →  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 14 |  | simplr2 | ⊢ ( ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  ∧  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) )  →  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  cyclShift  𝑛 )  =  ( 𝑦  cyclShift  𝑚 ) ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  =  ( 𝑦  cyclShift  𝑛 )  ↔  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) ) | 
						
							| 17 | 16 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑧  cyclShift  𝑛 )  =  ( 𝑧  cyclShift  𝑘 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑦  =  ( 𝑧  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) ) | 
						
							| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 )  ↔  ∃ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 22 | 21 | clwwlkbp | ⊢ ( 𝑧  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑧  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 23 | 22 | simp2d | ⊢ ( 𝑧  ∈  ( ClWWalks ‘ 𝐺 )  →  𝑧  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 24 | 23 | ad2antlr | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  𝑧  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 26 | 24 25 | cshwcsh2id | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 27 | 26 | exp5l | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑥  =  ( 𝑦  cyclShift  𝑚 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 28 | 27 | imp41 | ⊢ ( ( ( ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 29 | 28 | rexlimdva | ⊢ ( ( ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( ∃ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 30 | 29 | rexlimdva2 | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑚 )  →  ( ∃ 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 31 | 20 30 | syl7bi | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑚 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 32 | 17 31 | biimtrid | ⊢ ( ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 33 | 32 | exp31 | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( 𝑧  ∈  ( ClWWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 34 | 33 | com15 | ⊢ ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 )  →  ( 𝑧  ∈  ( ClWWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 35 | 34 | impcom | ⊢ ( ( 𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 36 | 35 | 3adant1 | ⊢ ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 38 | 37 | com13 | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 39 | 38 | 3impia | ⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 40 | 39 | impcom | ⊢ ( ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  ∧  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) | 
						
							| 41 | 13 14 40 | 3jca | ⊢ ( ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  ∧  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) )  →  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 42 | 1 | erclwwlkeq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑧  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 43 | 42 | 3adant2 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑧  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) ) | 
						
							| 44 | 41 43 | syl5ibrcom | ⊢ ( ( ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  ∧  ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) ) )  ∧  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) )  →  ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  𝑥  ∼  𝑧 ) ) | 
						
							| 45 | 44 | exp31 | ⊢ ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  𝑥  ∼  𝑧 ) ) ) ) | 
						
							| 46 | 45 | com24 | ⊢ ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  𝑥  ∼  𝑧 ) ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  𝑥  ∼  𝑧 ) ) ) ) ) | 
						
							| 48 | 47 | com4t | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  𝑥  ∼  𝑧 ) ) ) ) ) | 
						
							| 49 | 12 48 | sylbid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  𝑥  ∼  𝑧 ) ) ) ) ) | 
						
							| 50 | 49 | com25 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑦  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑧  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑦  =  ( 𝑧  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 𝑥  ∼  𝑦  →  𝑥  ∼  𝑧 ) ) ) ) ) | 
						
							| 51 | 10 50 | sylbid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 𝑥  ∼  𝑦  →  𝑥  ∼  𝑧 ) ) ) ) ) | 
						
							| 52 | 8 51 | mpdd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑦  ∼  𝑧  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 𝑥  ∼  𝑦  →  𝑥  ∼  𝑧 ) ) ) ) | 
						
							| 53 | 52 | com24 | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 𝑦  ∼  𝑧  →  𝑥  ∼  𝑧 ) ) ) ) | 
						
							| 54 | 6 53 | mpdd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( 𝑦  ∼  𝑧  →  𝑥  ∼  𝑧 ) ) ) | 
						
							| 55 | 54 | impd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑥  ∼  𝑦  ∧  𝑦  ∼  𝑧 )  →  𝑥  ∼  𝑧 ) ) | 
						
							| 56 | 2 3 4 55 | mp3an | ⊢ ( ( 𝑥  ∼  𝑦  ∧  𝑦  ∼  𝑧 )  →  𝑥  ∼  𝑧 ) |