| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwcsh2id.1 | ⊢ ( 𝜑  →  𝑧  ∈  Word  𝑉 ) | 
						
							| 2 |  | cshwcsh2id.2 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ( 𝑦  cyclShift  𝑚 )  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ( 𝑥  =  ( 𝑦  cyclShift  𝑚 )  ↔  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ↔  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ↔  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) ) ) ) | 
						
							| 7 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 8 |  | elfznn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 9 |  | nn0addcl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑘  +  𝑚 )  ∈  ℕ0 ) | 
						
							| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( 𝑘  +  𝑚 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑘  +  𝑚 )  ∈  ℕ0 ) | 
						
							| 12 |  | elfz3nn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 14 |  | simprl | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 ) ) | 
						
							| 15 |  | elfz2nn0 | ⊢ ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ↔  ( ( 𝑘  +  𝑚 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anbrc | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 18 | 1 | adantl | ⊢ ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  𝑧  ∈  Word  𝑉 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑧  ∈  Word  𝑉 ) | 
						
							| 20 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 22 |  | elfzelz | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 25 |  | 2cshw | ⊢ ( ( 𝑧  ∈  Word  𝑉  ∧  𝑘  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) | 
						
							| 26 | 19 21 24 25 | syl3anc | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  ↔  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) | 
						
							| 29 | 17 28 | jca | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) | 
						
							| 30 | 29 | exp41 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) ) | 
						
							| 31 | 30 | com23 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) ) | 
						
							| 32 | 31 | com24 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) | 
						
							| 34 | 33 | com12 | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) | 
						
							| 36 | 6 35 | sylbid | ⊢ ( ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) | 
						
							| 37 | 36 | ancoms | ⊢ ( ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  𝑚 )  →  ( 𝑧  cyclShift  𝑛 )  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) | 
						
							| 40 | 39 | rspceeqv | ⊢ ( ( ( 𝑘  +  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) | 
						
							| 41 | 38 40 | syl6com | ⊢ ( ( ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 42 |  | elfz2 | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ↔  ( ( 0  ∈  ℤ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  ( 0  ≤  𝑘  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 43 |  | nn0z | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℤ ) | 
						
							| 44 |  | zaddcl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( 𝑘  +  𝑚 )  ∈  ℤ ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑚  ∈  ℤ  →  ( 𝑘  +  𝑚 )  ∈  ℤ ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑚  ∈  ℤ  →  ( 𝑘  +  𝑚 )  ∈  ℤ ) ) | 
						
							| 47 | 46 | impcom | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ ) )  →  ( 𝑘  +  𝑚 )  ∈  ℤ ) | 
						
							| 48 |  | simprl | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 49 | 47 48 | zsubcld | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝑚  ∈  ℤ  →  ( ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 51 | 43 50 | syl | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 52 | 51 | com12 | ⊢ ( ( ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 53 | 52 | 3adant1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 0  ∈  ℤ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  ( 0  ≤  𝑘  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) ) )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 55 | 42 54 | sylbi | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) ) | 
						
							| 56 | 8 55 | mpan9 | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 58 |  | elfz2nn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 59 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 60 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑧 )  ∈  ℕ0  →  ( ♯ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 61 | 59 60 | anim12i | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  →  ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ ) ) | 
						
							| 62 |  | nn0re | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℝ ) | 
						
							| 63 | 61 62 | anim12i | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ ) ) | 
						
							| 64 |  | simplr | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( ♯ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 65 |  | readdcl | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( 𝑘  +  𝑚 )  ∈  ℝ ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( 𝑘  +  𝑚 )  ∈  ℝ ) | 
						
							| 67 | 64 66 | ltnled | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝑘  +  𝑚 )  ↔  ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 68 | 64 66 | posdifd | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝑘  +  𝑚 )  ↔  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 69 | 68 | biimpd | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝑘  +  𝑚 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 70 | 67 69 | sylbird | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ )  ∧  𝑚  ∈  ℝ )  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 71 | 63 70 | syl | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  →  ( 𝑚  ∈  ℕ0  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 73 | 72 | 3adant3 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑚  ∈  ℕ0  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 74 | 58 73 | sylbi | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑚  ∈  ℕ0  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 75 | 8 74 | mpan9 | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 76 | 75 | com12 | ⊢ ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 78 | 77 | impcom | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 79 |  | elnnz | ⊢ ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℕ  ↔  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℤ  ∧  0  <  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 80 | 57 78 79 | sylanbrc | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℕ ) | 
						
							| 81 | 80 | nnnn0d | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℕ0 ) | 
						
							| 82 | 12 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 83 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( 0 ... ( ♯ ‘ 𝑦 ) )  =  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 84 | 83 | eleq2d | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ↔  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 85 | 84 | anbi1d | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ↔  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 86 |  | elfz2nn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ↔  ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 87 | 59 | adantr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 88 | 87 62 | anim12i | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑘  ∈  ℝ  ∧  𝑚  ∈  ℝ ) ) | 
						
							| 89 | 60 60 | jca | ⊢ ( ( ♯ ‘ 𝑧 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑧 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ ) ) | 
						
							| 90 | 89 | ad2antlr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑧 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ ) ) | 
						
							| 91 |  | le2add | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  𝑚  ∈  ℝ )  ∧  ( ( ♯ ‘ 𝑧 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑧 )  ∈  ℝ ) )  →  ( ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑘  +  𝑚 )  ≤  ( ( ♯ ‘ 𝑧 )  +  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 92 | 88 90 91 | syl2anc | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑘  +  𝑚 )  ≤  ( ( ♯ ‘ 𝑧 )  +  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 93 |  | nn0readdcl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑘  +  𝑚 )  ∈  ℝ ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑘  +  𝑚 )  ∈  ℝ ) | 
						
							| 95 | 60 | ad2antlr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ♯ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 96 | 94 95 95 | lesubadd2d | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 )  ↔  ( 𝑘  +  𝑚 )  ≤  ( ( ♯ ‘ 𝑧 )  +  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 97 | 92 96 | sylibrd | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 98 | 97 | expcomd | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  ≤  ( ♯ ‘ 𝑧 )  →  ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 99 | 98 | ex | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  →  ( 𝑚  ∈  ℕ0  →  ( 𝑚  ≤  ( ♯ ‘ 𝑧 )  →  ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 100 | 99 | com24 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0 )  →  ( 𝑘  ≤  ( ♯ ‘ 𝑧 )  →  ( 𝑚  ≤  ( ♯ ‘ 𝑧 )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 101 | 100 | 3impia | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑚  ≤  ( ♯ ‘ 𝑧 )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 102 | 101 | com13 | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  ≤  ( ♯ ‘ 𝑧 )  →  ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 103 | 102 | imp | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑘  ≤  ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 104 | 58 103 | biimtrid | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 105 | 104 | 3adant2 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑧 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 106 | 86 105 | sylbi | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 107 | 106 | imp | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) | 
						
							| 108 | 85 107 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ 𝑧 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 110 | 2 109 | syl | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 112 | 111 | impcom | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) | 
						
							| 113 |  | elfz2nn0 | ⊢ ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ↔  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 114 | 81 82 112 113 | syl3anbrc | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 116 | 1 | adantl | ⊢ ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  𝑧  ∈  Word  𝑉 ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑧  ∈  Word  𝑉 ) | 
						
							| 118 | 20 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 119 | 23 | adantr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 120 | 117 118 119 25 | syl3anc | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  =  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) ) ) | 
						
							| 121 | 20 22 44 | syl2anr | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  →  ( 𝑘  +  𝑚 )  ∈  ℤ ) | 
						
							| 122 |  | cshwsublen | ⊢ ( ( 𝑧  ∈  Word  𝑉  ∧  ( 𝑘  +  𝑚 )  ∈  ℤ )  →  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) )  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 123 | 116 121 122 | syl2anr | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑧  cyclShift  ( 𝑘  +  𝑚 ) )  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 124 | 120 123 | eqtrd | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 125 | 124 | eqeq2d | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  ↔  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 126 | 125 | biimpa | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 127 | 115 126 | jca | ⊢ ( ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) )  ∧  ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) | 
						
							| 128 | 127 | exp41 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 129 | 128 | com23 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 130 | 129 | com24 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 131 | 130 | imp | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( ( 𝑧  cyclShift  𝑘 )  cyclShift  𝑚 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) | 
						
							| 132 | 5 131 | biimtrdi | ⊢ ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 133 | 132 | com23 | ⊢ ( 𝑦  =  ( 𝑧  cyclShift  𝑘 )  →  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 134 | 133 | impcom | ⊢ ( ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) )  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) ) | 
						
							| 135 | 134 | impcom | ⊢ ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 136 |  | oveq2 | ⊢ ( 𝑛  =  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  →  ( 𝑧  cyclShift  𝑛 )  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 137 | 136 | rspceeqv | ⊢ ( ( ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑥  =  ( 𝑧  cyclShift  ( ( 𝑘  +  𝑚 )  −  ( ♯ ‘ 𝑧 ) ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) | 
						
							| 138 | 135 137 | syl6com | ⊢ ( ( ¬  ( 𝑘  +  𝑚 )  ≤  ( ♯ ‘ 𝑧 )  ∧  𝜑 )  →  ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) | 
						
							| 139 | 41 138 | pm2.61ian | ⊢ ( 𝜑  →  ( ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  ∧  ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) )  ∧  𝑦  =  ( 𝑧  cyclShift  𝑘 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑧 ) ) 𝑥  =  ( 𝑧  cyclShift  𝑛 ) ) ) |