| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwcsh2id.1 |  |-  ( ph -> z e. Word V ) | 
						
							| 2 |  | cshwcsh2id.2 |  |-  ( ph -> ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( y = ( z cyclShift k ) -> ( y cyclShift m ) = ( ( z cyclShift k ) cyclShift m ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( y = ( z cyclShift k ) -> ( x = ( y cyclShift m ) <-> x = ( ( z cyclShift k ) cyclShift m ) ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( y = ( z cyclShift k ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) <-> ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( y = ( z cyclShift k ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) <-> ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) ) ) | 
						
							| 7 |  | elfznn0 |  |-  ( k e. ( 0 ... ( # ` z ) ) -> k e. NN0 ) | 
						
							| 8 |  | elfznn0 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> m e. NN0 ) | 
						
							| 9 |  | nn0addcl |  |-  ( ( k e. NN0 /\ m e. NN0 ) -> ( k + m ) e. NN0 ) | 
						
							| 10 | 7 8 9 | syl2anr |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( k + m ) e. NN0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( k + m ) e. NN0 ) | 
						
							| 12 |  | elfz3nn0 |  |-  ( k e. ( 0 ... ( # ` z ) ) -> ( # ` z ) e. NN0 ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( # ` z ) e. NN0 ) | 
						
							| 14 |  | simprl |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( k + m ) <_ ( # ` z ) ) | 
						
							| 15 |  | elfz2nn0 |  |-  ( ( k + m ) e. ( 0 ... ( # ` z ) ) <-> ( ( k + m ) e. NN0 /\ ( # ` z ) e. NN0 /\ ( k + m ) <_ ( # ` z ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anbrc |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( k + m ) e. ( 0 ... ( # ` z ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( k + m ) e. ( 0 ... ( # ` z ) ) ) | 
						
							| 18 | 1 | adantl |  |-  ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> z e. Word V ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> z e. Word V ) | 
						
							| 20 |  | elfzelz |  |-  ( k e. ( 0 ... ( # ` z ) ) -> k e. ZZ ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> k e. ZZ ) | 
						
							| 22 |  | elfzelz |  |-  ( m e. ( 0 ... ( # ` y ) ) -> m e. ZZ ) | 
						
							| 23 | 22 | adantr |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> m e. ZZ ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> m e. ZZ ) | 
						
							| 25 |  | 2cshw |  |-  ( ( z e. Word V /\ k e. ZZ /\ m e. ZZ ) -> ( ( z cyclShift k ) cyclShift m ) = ( z cyclShift ( k + m ) ) ) | 
						
							| 26 | 19 21 24 25 | syl3anc |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( z cyclShift k ) cyclShift m ) = ( z cyclShift ( k + m ) ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) <-> x = ( z cyclShift ( k + m ) ) ) ) | 
						
							| 28 | 27 | biimpa |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> x = ( z cyclShift ( k + m ) ) ) | 
						
							| 29 | 17 28 | jca |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) | 
						
							| 30 | 29 | exp41 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) ) | 
						
							| 31 | 30 | com23 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) ) | 
						
							| 32 | 31 | com24 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) ) | 
						
							| 33 | 32 | imp |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) | 
						
							| 34 | 33 | com12 |  |-  ( k e. ( 0 ... ( # ` z ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( y = ( z cyclShift k ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) | 
						
							| 36 | 6 35 | sylbid |  |-  ( ( y = ( z cyclShift k ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) | 
						
							| 37 | 36 | ancoms |  |-  ( ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) ) | 
						
							| 38 | 37 | impcom |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( n = ( k + m ) -> ( z cyclShift n ) = ( z cyclShift ( k + m ) ) ) | 
						
							| 40 | 39 | rspceeqv |  |-  ( ( ( k + m ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( k + m ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) | 
						
							| 41 | 38 40 | syl6com |  |-  ( ( ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) | 
						
							| 42 |  | elfz2 |  |-  ( k e. ( 0 ... ( # ` z ) ) <-> ( ( 0 e. ZZ /\ ( # ` z ) e. ZZ /\ k e. ZZ ) /\ ( 0 <_ k /\ k <_ ( # ` z ) ) ) ) | 
						
							| 43 |  | nn0z |  |-  ( m e. NN0 -> m e. ZZ ) | 
						
							| 44 |  | zaddcl |  |-  ( ( k e. ZZ /\ m e. ZZ ) -> ( k + m ) e. ZZ ) | 
						
							| 45 | 44 | ex |  |-  ( k e. ZZ -> ( m e. ZZ -> ( k + m ) e. ZZ ) ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( # ` z ) e. ZZ /\ k e. ZZ ) -> ( m e. ZZ -> ( k + m ) e. ZZ ) ) | 
						
							| 47 | 46 | impcom |  |-  ( ( m e. ZZ /\ ( ( # ` z ) e. ZZ /\ k e. ZZ ) ) -> ( k + m ) e. ZZ ) | 
						
							| 48 |  | simprl |  |-  ( ( m e. ZZ /\ ( ( # ` z ) e. ZZ /\ k e. ZZ ) ) -> ( # ` z ) e. ZZ ) | 
						
							| 49 | 47 48 | zsubcld |  |-  ( ( m e. ZZ /\ ( ( # ` z ) e. ZZ /\ k e. ZZ ) ) -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) | 
						
							| 50 | 49 | ex |  |-  ( m e. ZZ -> ( ( ( # ` z ) e. ZZ /\ k e. ZZ ) -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 51 | 43 50 | syl |  |-  ( m e. NN0 -> ( ( ( # ` z ) e. ZZ /\ k e. ZZ ) -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 52 | 51 | com12 |  |-  ( ( ( # ` z ) e. ZZ /\ k e. ZZ ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 53 | 52 | 3adant1 |  |-  ( ( 0 e. ZZ /\ ( # ` z ) e. ZZ /\ k e. ZZ ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( 0 e. ZZ /\ ( # ` z ) e. ZZ /\ k e. ZZ ) /\ ( 0 <_ k /\ k <_ ( # ` z ) ) ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 55 | 42 54 | sylbi |  |-  ( k e. ( 0 ... ( # ` z ) ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) ) | 
						
							| 56 | 8 55 | mpan9 |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( k + m ) - ( # ` z ) ) e. ZZ ) | 
						
							| 58 |  | elfz2nn0 |  |-  ( k e. ( 0 ... ( # ` z ) ) <-> ( k e. NN0 /\ ( # ` z ) e. NN0 /\ k <_ ( # ` z ) ) ) | 
						
							| 59 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 60 |  | nn0re |  |-  ( ( # ` z ) e. NN0 -> ( # ` z ) e. RR ) | 
						
							| 61 | 59 60 | anim12i |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) -> ( k e. RR /\ ( # ` z ) e. RR ) ) | 
						
							| 62 |  | nn0re |  |-  ( m e. NN0 -> m e. RR ) | 
						
							| 63 | 61 62 | anim12i |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) ) | 
						
							| 64 |  | simplr |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( # ` z ) e. RR ) | 
						
							| 65 |  | readdcl |  |-  ( ( k e. RR /\ m e. RR ) -> ( k + m ) e. RR ) | 
						
							| 66 | 65 | adantlr |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( k + m ) e. RR ) | 
						
							| 67 | 64 66 | ltnled |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( ( # ` z ) < ( k + m ) <-> -. ( k + m ) <_ ( # ` z ) ) ) | 
						
							| 68 | 64 66 | posdifd |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( ( # ` z ) < ( k + m ) <-> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 69 | 68 | biimpd |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( ( # ` z ) < ( k + m ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 70 | 67 69 | sylbird |  |-  ( ( ( k e. RR /\ ( # ` z ) e. RR ) /\ m e. RR ) -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 71 | 63 70 | syl |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) -> ( m e. NN0 -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) ) | 
						
							| 73 | 72 | 3adant3 |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 /\ k <_ ( # ` z ) ) -> ( m e. NN0 -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) ) | 
						
							| 74 | 58 73 | sylbi |  |-  ( k e. ( 0 ... ( # ` z ) ) -> ( m e. NN0 -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) ) | 
						
							| 75 | 8 74 | mpan9 |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( -. ( k + m ) <_ ( # ` z ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 76 | 75 | com12 |  |-  ( -. ( k + m ) <_ ( # ` z ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 78 | 77 | impcom |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> 0 < ( ( k + m ) - ( # ` z ) ) ) | 
						
							| 79 |  | elnnz |  |-  ( ( ( k + m ) - ( # ` z ) ) e. NN <-> ( ( ( k + m ) - ( # ` z ) ) e. ZZ /\ 0 < ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 80 | 57 78 79 | sylanbrc |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( k + m ) - ( # ` z ) ) e. NN ) | 
						
							| 81 | 80 | nnnn0d |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( k + m ) - ( # ` z ) ) e. NN0 ) | 
						
							| 82 | 12 | ad2antlr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( # ` z ) e. NN0 ) | 
						
							| 83 |  | oveq2 |  |-  ( ( # ` y ) = ( # ` z ) -> ( 0 ... ( # ` y ) ) = ( 0 ... ( # ` z ) ) ) | 
						
							| 84 | 83 | eleq2d |  |-  ( ( # ` y ) = ( # ` z ) -> ( m e. ( 0 ... ( # ` y ) ) <-> m e. ( 0 ... ( # ` z ) ) ) ) | 
						
							| 85 | 84 | anbi1d |  |-  ( ( # ` y ) = ( # ` z ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) <-> ( m e. ( 0 ... ( # ` z ) ) /\ k e. ( 0 ... ( # ` z ) ) ) ) ) | 
						
							| 86 |  | elfz2nn0 |  |-  ( m e. ( 0 ... ( # ` z ) ) <-> ( m e. NN0 /\ ( # ` z ) e. NN0 /\ m <_ ( # ` z ) ) ) | 
						
							| 87 | 59 | adantr |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) -> k e. RR ) | 
						
							| 88 | 87 62 | anim12i |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( k e. RR /\ m e. RR ) ) | 
						
							| 89 | 60 60 | jca |  |-  ( ( # ` z ) e. NN0 -> ( ( # ` z ) e. RR /\ ( # ` z ) e. RR ) ) | 
						
							| 90 | 89 | ad2antlr |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( ( # ` z ) e. RR /\ ( # ` z ) e. RR ) ) | 
						
							| 91 |  | le2add |  |-  ( ( ( k e. RR /\ m e. RR ) /\ ( ( # ` z ) e. RR /\ ( # ` z ) e. RR ) ) -> ( ( k <_ ( # ` z ) /\ m <_ ( # ` z ) ) -> ( k + m ) <_ ( ( # ` z ) + ( # ` z ) ) ) ) | 
						
							| 92 | 88 90 91 | syl2anc |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( ( k <_ ( # ` z ) /\ m <_ ( # ` z ) ) -> ( k + m ) <_ ( ( # ` z ) + ( # ` z ) ) ) ) | 
						
							| 93 |  | nn0readdcl |  |-  ( ( k e. NN0 /\ m e. NN0 ) -> ( k + m ) e. RR ) | 
						
							| 94 | 93 | adantlr |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( k + m ) e. RR ) | 
						
							| 95 | 60 | ad2antlr |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( # ` z ) e. RR ) | 
						
							| 96 | 94 95 95 | lesubadd2d |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) <-> ( k + m ) <_ ( ( # ` z ) + ( # ` z ) ) ) ) | 
						
							| 97 | 92 96 | sylibrd |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( ( k <_ ( # ` z ) /\ m <_ ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 98 | 97 | expcomd |  |-  ( ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) /\ m e. NN0 ) -> ( m <_ ( # ` z ) -> ( k <_ ( # ` z ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) ) | 
						
							| 99 | 98 | ex |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) -> ( m e. NN0 -> ( m <_ ( # ` z ) -> ( k <_ ( # ` z ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) ) ) | 
						
							| 100 | 99 | com24 |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 ) -> ( k <_ ( # ` z ) -> ( m <_ ( # ` z ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) ) ) | 
						
							| 101 | 100 | 3impia |  |-  ( ( k e. NN0 /\ ( # ` z ) e. NN0 /\ k <_ ( # ` z ) ) -> ( m <_ ( # ` z ) -> ( m e. NN0 -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) ) | 
						
							| 102 | 101 | com13 |  |-  ( m e. NN0 -> ( m <_ ( # ` z ) -> ( ( k e. NN0 /\ ( # ` z ) e. NN0 /\ k <_ ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) ) | 
						
							| 103 | 102 | imp |  |-  ( ( m e. NN0 /\ m <_ ( # ` z ) ) -> ( ( k e. NN0 /\ ( # ` z ) e. NN0 /\ k <_ ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 104 | 58 103 | biimtrid |  |-  ( ( m e. NN0 /\ m <_ ( # ` z ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 105 | 104 | 3adant2 |  |-  ( ( m e. NN0 /\ ( # ` z ) e. NN0 /\ m <_ ( # ` z ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 106 | 86 105 | sylbi |  |-  ( m e. ( 0 ... ( # ` z ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 107 | 106 | imp |  |-  ( ( m e. ( 0 ... ( # ` z ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) | 
						
							| 108 | 85 107 | biimtrdi |  |-  ( ( # ` y ) = ( # ` z ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 110 | 2 109 | syl |  |-  ( ph -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 112 | 111 | impcom |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) | 
						
							| 113 |  | elfz2nn0 |  |-  ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) <-> ( ( ( k + m ) - ( # ` z ) ) e. NN0 /\ ( # ` z ) e. NN0 /\ ( ( k + m ) - ( # ` z ) ) <_ ( # ` z ) ) ) | 
						
							| 114 | 81 82 112 113 | syl3anbrc |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) ) | 
						
							| 116 | 1 | adantl |  |-  ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> z e. Word V ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> z e. Word V ) | 
						
							| 118 | 20 | ad2antlr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> k e. ZZ ) | 
						
							| 119 | 23 | adantr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> m e. ZZ ) | 
						
							| 120 | 117 118 119 25 | syl3anc |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( z cyclShift k ) cyclShift m ) = ( z cyclShift ( k + m ) ) ) | 
						
							| 121 | 20 22 44 | syl2anr |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) -> ( k + m ) e. ZZ ) | 
						
							| 122 |  | cshwsublen |  |-  ( ( z e. Word V /\ ( k + m ) e. ZZ ) -> ( z cyclShift ( k + m ) ) = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 123 | 116 121 122 | syl2anr |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( z cyclShift ( k + m ) ) = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 124 | 120 123 | eqtrd |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( ( z cyclShift k ) cyclShift m ) = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 125 | 124 | eqeq2d |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) <-> x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) | 
						
							| 126 | 125 | biimpa |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 127 | 115 126 | jca |  |-  ( ( ( ( m e. ( 0 ... ( # ` y ) ) /\ k e. ( 0 ... ( # ` z ) ) ) /\ ( -. ( k + m ) <_ ( # ` z ) /\ ph ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) | 
						
							| 128 | 127 | exp41 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) ) | 
						
							| 129 | 128 | com23 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) ) | 
						
							| 130 | 129 | com24 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( x = ( ( z cyclShift k ) cyclShift m ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) ) | 
						
							| 131 | 130 | imp |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( ( z cyclShift k ) cyclShift m ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) | 
						
							| 132 | 5 131 | biimtrdi |  |-  ( y = ( z cyclShift k ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) ) | 
						
							| 133 | 132 | com23 |  |-  ( y = ( z cyclShift k ) -> ( k e. ( 0 ... ( # ` z ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) ) | 
						
							| 134 | 133 | impcom |  |-  ( ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) ) | 
						
							| 135 | 134 | impcom |  |-  ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) ) ) | 
						
							| 136 |  | oveq2 |  |-  ( n = ( ( k + m ) - ( # ` z ) ) -> ( z cyclShift n ) = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) | 
						
							| 137 | 136 | rspceeqv |  |-  ( ( ( ( k + m ) - ( # ` z ) ) e. ( 0 ... ( # ` z ) ) /\ x = ( z cyclShift ( ( k + m ) - ( # ` z ) ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) | 
						
							| 138 | 135 137 | syl6com |  |-  ( ( -. ( k + m ) <_ ( # ` z ) /\ ph ) -> ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) | 
						
							| 139 | 41 138 | pm2.61ian |  |-  ( ph -> ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) |