| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfn |  |-  ( F e. Word S -> F Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 2 |  | fnfun |  |-  ( F Fn ( 0 ..^ ( # ` F ) ) -> Fun F ) | 
						
							| 3 | 1 2 | syl |  |-  ( F e. Word S -> Fun F ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> Fun F ) | 
						
							| 5 |  | wrddm |  |-  ( F e. Word S -> dom F = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 6 |  | difssd |  |-  ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ ( # ` F ) ) \ { J } ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( N = ( # ` F ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 8 | 7 | difeq1d |  |-  ( N = ( # ` F ) -> ( ( 0 ..^ N ) \ { J } ) = ( ( 0 ..^ ( # ` F ) ) \ { J } ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ N ) \ { J } ) = ( ( 0 ..^ ( # ` F ) ) \ { J } ) ) | 
						
							| 10 |  | simpl |  |-  ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> dom F = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 11 | 6 9 10 | 3sstr4d |  |-  ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) | 
						
							| 12 | 11 | a1d |  |-  ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) | 
						
							| 13 | 12 | ex |  |-  ( dom F = ( 0 ..^ ( # ` F ) ) -> ( N = ( # ` F ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( F e. Word S -> ( N = ( # ` F ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) ) | 
						
							| 15 | 14 | 3imp |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) | 
						
							| 16 | 4 15 | jca |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun F /\ ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) | 
						
							| 17 |  | dfimafn |  |-  ( ( Fun F /\ ( ( 0 ..^ N ) \ { J } ) C_ dom F ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } ) | 
						
							| 19 |  | modsumfzodifsn |  |-  ( ( J e. ( 0 ..^ N ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) | 
						
							| 20 | 19 | 3ad2antl3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) | 
						
							| 21 |  | oveq2 |  |-  ( ( # ` F ) = N -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) | 
						
							| 22 | 21 | eqcoms |  |-  ( N = ( # ` F ) -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( N = ( # ` F ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) | 
						
							| 24 | 23 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) | 
						
							| 26 | 20 25 | mpbird |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) ) | 
						
							| 27 |  | modfzo0difsn |  |-  ( ( J e. ( 0 ..^ N ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) | 
						
							| 28 | 27 | 3ad2antl3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) | 
						
							| 29 |  | oveq2 |  |-  ( N = ( # ` F ) -> ( ( y + J ) mod N ) = ( ( y + J ) mod ( # ` F ) ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( N = ( # ` F ) -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) | 
						
							| 31 | 30 | eqeq2d |  |-  ( N = ( # ` F ) -> ( x = ( ( y + J ) mod ( # ` F ) ) <-> x = ( ( y + J ) mod N ) ) ) | 
						
							| 32 | 31 | rexbidv |  |-  ( N = ( # ` F ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) | 
						
							| 33 | 32 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) | 
						
							| 35 | 28 34 | mpbird |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) ) | 
						
							| 36 |  | fveq2 |  |-  ( x = ( ( y + J ) mod ( # ` F ) ) -> ( F ` x ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) | 
						
							| 37 | 36 | 3ad2ant3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` x ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) | 
						
							| 38 |  | simpl1 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> F e. Word S ) | 
						
							| 39 |  | elfzoelz |  |-  ( J e. ( 0 ..^ N ) -> J e. ZZ ) | 
						
							| 40 | 39 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. ZZ ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> J e. ZZ ) | 
						
							| 42 |  | oveq2 |  |-  ( N = ( # ` F ) -> ( 1 ..^ N ) = ( 1 ..^ ( # ` F ) ) ) | 
						
							| 43 | 42 | eleq2d |  |-  ( N = ( # ` F ) -> ( y e. ( 1 ..^ N ) <-> y e. ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 44 |  | fzo0ss1 |  |-  ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) | 
						
							| 45 | 44 | sseli |  |-  ( y e. ( 1 ..^ ( # ` F ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 46 | 43 45 | biimtrdi |  |-  ( N = ( # ` F ) -> ( y e. ( 1 ..^ N ) -> y e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 1 ..^ N ) -> y e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 49 |  | cshwidxmod |  |-  ( ( F e. Word S /\ J e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift J ) ` y ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( F e. Word S /\ J e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) | 
						
							| 51 | 38 41 48 50 | syl3anc |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) | 
						
							| 53 | 37 52 | eqtrd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` x ) = ( ( F cyclShift J ) ` y ) ) | 
						
							| 54 | 53 | eqeq1d |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( ( F ` x ) = z <-> ( ( F cyclShift J ) ` y ) = z ) ) | 
						
							| 55 | 26 35 54 | rexxfrd2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z <-> E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z ) ) | 
						
							| 56 | 55 | abbidv |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) | 
						
							| 57 | 39 | anim2i |  |-  ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) | 
						
							| 58 | 57 | 3adant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) | 
						
							| 59 |  | cshwfn |  |-  ( ( F e. Word S /\ J e. ZZ ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 61 |  | fnfun |  |-  ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift J ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift J ) ) | 
						
							| 63 | 42 44 | eqsstrdi |  |-  ( N = ( # ` F ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 64 | 63 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 66 |  | fndm |  |-  ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 68 | 65 67 | sseqtrrd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) | 
						
							| 69 | 62 68 | jca |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) | 
						
							| 70 | 60 69 | mpdan |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) | 
						
							| 71 |  | dfimafn |  |-  ( ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) | 
						
							| 73 | 56 72 | eqtr4d |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) | 
						
							| 74 | 18 73 | eqtrd |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |