Metamath Proof Explorer


Theorem elfzoelz

Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion elfzoelz
|- ( A e. ( B ..^ C ) -> A e. ZZ )

Proof

Step Hyp Ref Expression
1 elfzoel1
 |-  ( A e. ( B ..^ C ) -> B e. ZZ )
2 elfzoel2
 |-  ( A e. ( B ..^ C ) -> C e. ZZ )
3 fzof
 |-  ..^ : ( ZZ X. ZZ ) --> ~P ZZ
4 3 fovcl
 |-  ( ( B e. ZZ /\ C e. ZZ ) -> ( B ..^ C ) e. ~P ZZ )
5 1 2 4 syl2anc
 |-  ( A e. ( B ..^ C ) -> ( B ..^ C ) e. ~P ZZ )
6 5 elpwid
 |-  ( A e. ( B ..^ C ) -> ( B ..^ C ) C_ ZZ )
7 id
 |-  ( A e. ( B ..^ C ) -> A e. ( B ..^ C ) )
8 6 7 sseldd
 |-  ( A e. ( B ..^ C ) -> A e. ZZ )