Metamath Proof Explorer


Theorem elfzoelz

Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion elfzoelz ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 elfzoel1 ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ )
2 elfzoel2 ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ )
3 fzof ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ
4 3 fovcl ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ..^ 𝐶 ) ∈ 𝒫 ℤ )
5 1 2 4 syl2anc ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ∈ 𝒫 ℤ )
6 5 elpwid ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ⊆ ℤ )
7 id ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) )
8 6 7 sseldd ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ )