| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshimadifsn |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) | 
						
							| 2 |  | elfzoel2 |  |-  ( J e. ( 0 ..^ N ) -> N e. ZZ ) | 
						
							| 3 |  | elfzom1elp1fzo1 |  |-  ( ( N e. ZZ /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) | 
						
							| 4 | 3 | ex |  |-  ( N e. ZZ -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) | 
						
							| 8 |  | elfzo1elm1fzo0 |  |-  ( x e. ( 1 ..^ N ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 10 |  | oveq1 |  |-  ( y = ( x - 1 ) -> ( y + 1 ) = ( ( x - 1 ) + 1 ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( y = ( x - 1 ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) /\ y = ( x - 1 ) ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) | 
						
							| 13 |  | elfzoelz |  |-  ( x e. ( 1 ..^ N ) -> x e. ZZ ) | 
						
							| 14 | 13 | zcnd |  |-  ( x e. ( 1 ..^ N ) -> x e. CC ) | 
						
							| 15 |  | npcan1 |  |-  ( x e. CC -> ( ( x - 1 ) + 1 ) = x ) | 
						
							| 16 | 14 15 | syl |  |-  ( x e. ( 1 ..^ N ) -> ( ( x - 1 ) + 1 ) = x ) | 
						
							| 17 | 16 | eqcomd |  |-  ( x e. ( 1 ..^ N ) -> x = ( ( x - 1 ) + 1 ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> x = ( ( x - 1 ) + 1 ) ) | 
						
							| 19 | 9 12 18 | rspcedvd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> E. y e. ( 0 ..^ ( N - 1 ) ) x = ( y + 1 ) ) | 
						
							| 20 |  | fveq2 |  |-  ( x = ( y + 1 ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) | 
						
							| 21 | 20 | 3ad2ant3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) | 
						
							| 22 |  | elfzoelz |  |-  ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 23 | 22 | zcnd |  |-  ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. CC ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. CC ) | 
						
							| 25 |  | elfzoelz |  |-  ( J e. ( 0 ..^ N ) -> J e. ZZ ) | 
						
							| 26 | 25 | zcnd |  |-  ( J e. ( 0 ..^ N ) -> J e. CC ) | 
						
							| 27 | 26 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. CC ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. CC ) | 
						
							| 29 |  | 1cnd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 30 |  | add32r |  |-  ( ( y e. CC /\ J e. CC /\ 1 e. CC ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) | 
						
							| 31 | 24 28 29 30 | syl3anc |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) | 
						
							| 32 | 31 | fvoveq1d |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) | 
						
							| 33 |  | simpl1 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> F e. Word S ) | 
						
							| 34 | 25 | peano2zd |  |-  ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ZZ ) | 
						
							| 35 | 34 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( J + 1 ) e. ZZ ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( J + 1 ) e. ZZ ) | 
						
							| 37 |  | fzossrbm1 |  |-  ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) | 
						
							| 38 | 2 37 | syl |  |-  ( J e. ( 0 ..^ N ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) | 
						
							| 39 | 38 | sseld |  |-  ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) | 
						
							| 40 | 39 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ N ) ) | 
						
							| 42 |  | oveq2 |  |-  ( N = ( # ` F ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 43 | 42 | eleq2d |  |-  ( N = ( # ` F ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 44 | 43 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 46 | 41 45 | mpbid |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 47 |  | cshwidxmod |  |-  ( ( F e. Word S /\ ( J + 1 ) e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) | 
						
							| 48 | 33 36 46 47 | syl3anc |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) | 
						
							| 49 | 25 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. ZZ ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. ZZ ) | 
						
							| 51 |  | fzo0ss1 |  |-  ( 1 ..^ N ) C_ ( 0 ..^ N ) | 
						
							| 52 | 2 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> N e. ZZ ) | 
						
							| 53 | 52 3 | sylan |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) | 
						
							| 54 | 51 53 | sselid |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ N ) ) | 
						
							| 55 | 42 | eleq2d |  |-  ( N = ( # ` F ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 56 | 55 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 58 | 54 57 | mpbid |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 59 |  | cshwidxmod |  |-  ( ( F e. Word S /\ J e. ZZ /\ ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) | 
						
							| 60 | 33 50 58 59 | syl3anc |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) | 
						
							| 61 | 32 48 60 | 3eqtr4rd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) | 
						
							| 62 | 61 | 3adant3 |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) | 
						
							| 63 | 21 62 | eqtrd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) | 
						
							| 64 | 63 | eqeq1d |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( ( F cyclShift J ) ` x ) = z <-> ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) | 
						
							| 65 | 7 19 64 | rexxfrd2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z <-> E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) | 
						
							| 66 | 65 | abbidv |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) | 
						
							| 67 | 25 | anim2i |  |-  ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) | 
						
							| 68 | 67 | 3adant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) | 
						
							| 69 |  | cshwfn |  |-  ( ( F e. Word S /\ J e. ZZ ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 71 |  | fnfun |  |-  ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift J ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift J ) ) | 
						
							| 73 | 42 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 74 | 51 73 | sseqtrid |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 76 |  | fndm |  |-  ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 78 | 75 77 | sseqtrrd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) | 
						
							| 79 | 72 78 | jca |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) | 
						
							| 80 | 70 79 | mpdan |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) | 
						
							| 81 |  | dfimafn |  |-  ( ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) | 
						
							| 82 | 80 81 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) | 
						
							| 83 | 34 | anim2i |  |-  ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) | 
						
							| 84 | 83 | 3adant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) | 
						
							| 85 |  | cshwfn |  |-  ( ( F e. Word S /\ ( J + 1 ) e. ZZ ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 86 | 84 85 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 87 |  | fnfun |  |-  ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) | 
						
							| 89 | 38 | 3ad2ant3 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) | 
						
							| 90 |  | oveq2 |  |-  ( ( # ` F ) = N -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) | 
						
							| 91 | 90 | eqcoms |  |-  ( N = ( # ` F ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) | 
						
							| 92 | 91 | 3ad2ant2 |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) | 
						
							| 93 | 89 92 | sseqtrrd |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 95 |  | fndm |  |-  ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 97 | 94 96 | sseqtrrd |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) | 
						
							| 98 | 88 97 | jca |  |-  ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) | 
						
							| 99 | 86 98 | mpdan |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) | 
						
							| 100 |  | dfimafn |  |-  ( ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) | 
						
							| 102 | 66 82 101 | 3eqtr4d |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 103 | 1 102 | eqtrd |  |-  ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |