| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfn | ⊢ ( 𝐹  ∈  Word  𝑆  →  𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 2 |  | fnfun | ⊢ ( 𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  Fun  𝐹 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  ∈  Word  𝑆  →  Fun  𝐹 ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  Fun  𝐹 ) | 
						
							| 5 |  | wrddm | ⊢ ( 𝐹  ∈  Word  𝑆  →  dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 6 |  | difssd | ⊢ ( ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑁  =  ( ♯ ‘ 𝐹 ) )  →  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∖  { 𝐽 } )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 8 | 7 | difeq1d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  =  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∖  { 𝐽 } ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑁  =  ( ♯ ‘ 𝐹 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  =  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∖  { 𝐽 } ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑁  =  ( ♯ ‘ 𝐹 ) )  →  dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 | 6 9 10 | 3sstr4d | ⊢ ( ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑁  =  ( ♯ ‘ 𝐹 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) | 
						
							| 12 | 11 | a1d | ⊢ ( ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑁  =  ( ♯ ‘ 𝐹 ) )  →  ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( dom  𝐹  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) ) ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝐹  ∈  Word  𝑆  →  ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) ) ) | 
						
							| 15 | 14 | 3imp | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) | 
						
							| 16 | 4 15 | jca | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( Fun  𝐹  ∧  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 ) ) | 
						
							| 17 |  | dfimafn | ⊢ ( ( Fun  𝐹  ∧  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ⊆  dom  𝐹 )  →  ( 𝐹  “  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  =  { 𝑧  ∣  ∃ 𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ( 𝐹 ‘ 𝑥 )  =  𝑧 } ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  “  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  =  { 𝑧  ∣  ∃ 𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ( 𝐹 ‘ 𝑥 )  =  𝑧 } ) | 
						
							| 19 |  | modsumfzodifsn | ⊢ ( ( 𝐽  ∈  ( 0 ..^ 𝑁 )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 20 | 19 | 3ad2antl3 | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) | 
						
							| 22 | 21 | eqcoms | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ↔  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ↔  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  ( ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } )  ↔  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 26 | 20 25 | mpbird | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 27 |  | modfzo0difsn | ⊢ ( ( 𝐽  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  →  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) | 
						
							| 28 | 27 | 3ad2antl3 | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  →  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( 𝑦  +  𝐽 )  mod  𝑁 )  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) ) | 
						
							| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  →  ( ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  𝑁 ) ) ) | 
						
							| 35 | 28 34 | mpbird | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  →  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 37 | 36 | 3ad2ant3 | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 )  ∧  𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 38 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  𝐹  ∈  Word  𝑆 ) | 
						
							| 39 |  | elfzoelz | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  𝐽  ∈  ℤ ) | 
						
							| 40 | 39 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 1 ..^ 𝑁 )  =  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 43 | 42 | eleq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝑦  ∈  ( 1 ..^ 𝑁 )  ↔  𝑦  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 44 |  | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 45 | 44 | sseli | ⊢ ( 𝑦  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 46 | 43 45 | biimtrdi | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝑦  ∈  ( 1 ..^ 𝑁 )  →  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ( 1 ..^ 𝑁 )  →  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 49 |  | cshwidxmod | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ℤ  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ℤ  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 ) ) | 
						
							| 51 | 38 41 48 50 | syl3anc | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 ) )  →  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 ) ) | 
						
							| 52 | 51 | 3adant3 | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 )  ∧  𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 ) ) | 
						
							| 53 | 37 52 | eqtrd | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 )  ∧  𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 ) ) | 
						
							| 54 | 53 | eqeq1d | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ( 1 ..^ 𝑁 )  ∧  𝑥  =  ( ( 𝑦  +  𝐽 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑧  ↔  ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 55 | 26 35 54 | rexxfrd2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ∃ 𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ( 𝐹 ‘ 𝑥 )  =  𝑧  ↔  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 56 | 55 | abbidv | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  { 𝑧  ∣  ∃ 𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ( 𝐹 ‘ 𝑥 )  =  𝑧 }  =  { 𝑧  ∣  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  𝑧 } ) | 
						
							| 57 | 39 | anim2i | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ℤ ) ) | 
						
							| 58 | 57 | 3adant2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ℤ ) ) | 
						
							| 59 |  | cshwfn | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝐽  ∈  ℤ )  →  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 61 |  | fnfun | ⊢ ( ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  Fun  ( 𝐹  cyclShift  𝐽 ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  Fun  ( 𝐹  cyclShift  𝐽 ) ) | 
						
							| 63 | 42 44 | eqsstrdi | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 1 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 64 | 63 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 1 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 1 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 66 |  | fndm | ⊢ ( ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  dom  ( 𝐹  cyclShift  𝐽 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  dom  ( 𝐹  cyclShift  𝐽 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 68 | 65 67 | sseqtrrd | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 1 ..^ 𝑁 )  ⊆  dom  ( 𝐹  cyclShift  𝐽 ) ) | 
						
							| 69 | 62 68 | jca | ⊢ ( ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  ∧  ( 𝐹  cyclShift  𝐽 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( Fun  ( 𝐹  cyclShift  𝐽 )  ∧  ( 1 ..^ 𝑁 )  ⊆  dom  ( 𝐹  cyclShift  𝐽 ) ) ) | 
						
							| 70 | 60 69 | mpdan | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( Fun  ( 𝐹  cyclShift  𝐽 )  ∧  ( 1 ..^ 𝑁 )  ⊆  dom  ( 𝐹  cyclShift  𝐽 ) ) ) | 
						
							| 71 |  | dfimafn | ⊢ ( ( Fun  ( 𝐹  cyclShift  𝐽 )  ∧  ( 1 ..^ 𝑁 )  ⊆  dom  ( 𝐹  cyclShift  𝐽 ) )  →  ( ( 𝐹  cyclShift  𝐽 )  “  ( 1 ..^ 𝑁 ) )  =  { 𝑧  ∣  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  𝑧 } ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐹  cyclShift  𝐽 )  “  ( 1 ..^ 𝑁 ) )  =  { 𝑧  ∣  ∃ 𝑦  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  cyclShift  𝐽 ) ‘ 𝑦 )  =  𝑧 } ) | 
						
							| 73 | 56 72 | eqtr4d | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  { 𝑧  ∣  ∃ 𝑥  ∈  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) ( 𝐹 ‘ 𝑥 )  =  𝑧 }  =  ( ( 𝐹  cyclShift  𝐽 )  “  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 74 | 18 73 | eqtrd | ⊢ ( ( 𝐹  ∈  Word  𝑆  ∧  𝑁  =  ( ♯ ‘ 𝐹 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  “  ( ( 0 ..^ 𝑁 )  ∖  { 𝐽 } ) )  =  ( ( 𝐹  cyclShift  𝐽 )  “  ( 1 ..^ 𝑁 ) ) ) |