| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 |  | vex |  |-  y e. _V | 
						
							| 5 |  | vex |  |-  z e. _V | 
						
							| 6 | 1 2 | erclwwlkneqlen |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y -> ( # ` x ) = ( # ` y ) ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ y -> ( # ` x ) = ( # ` y ) ) ) | 
						
							| 8 | 1 2 | erclwwlkneqlen |  |-  ( ( y e. _V /\ z e. _V ) -> ( y .~ z -> ( # ` y ) = ( # ` z ) ) ) | 
						
							| 9 | 8 | 3adant1 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( y .~ z -> ( # ` y ) = ( # ` z ) ) ) | 
						
							| 10 | 1 2 | erclwwlkneq |  |-  ( ( y e. _V /\ z e. _V ) -> ( y .~ z <-> ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( y .~ z <-> ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) ) | 
						
							| 12 | 1 2 | erclwwlkneq |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y <-> ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ y <-> ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) ) | 
						
							| 14 |  | simpr1 |  |-  ( ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) /\ ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) -> x e. W ) | 
						
							| 15 |  | simplr2 |  |-  ( ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) /\ ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) -> z e. W ) | 
						
							| 16 |  | oveq2 |  |-  ( n = m -> ( y cyclShift n ) = ( y cyclShift m ) ) | 
						
							| 17 | 16 | eqeq2d |  |-  ( n = m -> ( x = ( y cyclShift n ) <-> x = ( y cyclShift m ) ) ) | 
						
							| 18 | 17 | cbvrexvw |  |-  ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) <-> E. m e. ( 0 ... N ) x = ( y cyclShift m ) ) | 
						
							| 19 |  | oveq2 |  |-  ( n = k -> ( z cyclShift n ) = ( z cyclShift k ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( n = k -> ( y = ( z cyclShift n ) <-> y = ( z cyclShift k ) ) ) | 
						
							| 21 | 20 | cbvrexvw |  |-  ( E. n e. ( 0 ... N ) y = ( z cyclShift n ) <-> E. k e. ( 0 ... N ) y = ( z cyclShift k ) ) | 
						
							| 22 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 23 | 22 | clwwlknbp |  |-  ( z e. ( N ClWWalksN G ) -> ( z e. Word ( Vtx ` G ) /\ ( # ` z ) = N ) ) | 
						
							| 24 |  | eqcom |  |-  ( ( # ` z ) = N <-> N = ( # ` z ) ) | 
						
							| 25 | 24 | biimpi |  |-  ( ( # ` z ) = N -> N = ( # ` z ) ) | 
						
							| 26 | 23 25 | simpl2im |  |-  ( z e. ( N ClWWalksN G ) -> N = ( # ` z ) ) | 
						
							| 27 | 26 1 | eleq2s |  |-  ( z e. W -> N = ( # ` z ) ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> N = ( # ` z ) ) | 
						
							| 29 | 23 | simpld |  |-  ( z e. ( N ClWWalksN G ) -> z e. Word ( Vtx ` G ) ) | 
						
							| 30 | 29 1 | eleq2s |  |-  ( z e. W -> z e. Word ( Vtx ` G ) ) | 
						
							| 31 | 30 | ad2antlr |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> z e. Word ( Vtx ` G ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> z e. Word ( Vtx ` G ) ) | 
						
							| 33 |  | simprr |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) | 
						
							| 34 | 32 33 | cshwcsh2id |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) | 
						
							| 35 |  | oveq2 |  |-  ( N = ( # ` z ) -> ( 0 ... N ) = ( 0 ... ( # ` z ) ) ) | 
						
							| 36 |  | oveq2 |  |-  ( ( # ` z ) = ( # ` y ) -> ( 0 ... ( # ` z ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 37 | 36 | eqcoms |  |-  ( ( # ` y ) = ( # ` z ) -> ( 0 ... ( # ` z ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( 0 ... ( # ` z ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( 0 ... ( # ` z ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 40 | 35 39 | sylan9eq |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( 0 ... N ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 41 | 40 | eleq2d |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( m e. ( 0 ... N ) <-> m e. ( 0 ... ( # ` y ) ) ) ) | 
						
							| 42 | 41 | anbi1d |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( m e. ( 0 ... N ) /\ x = ( y cyclShift m ) ) <-> ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) ) | 
						
							| 43 | 35 | eleq2d |  |-  ( N = ( # ` z ) -> ( k e. ( 0 ... N ) <-> k e. ( 0 ... ( # ` z ) ) ) ) | 
						
							| 44 | 43 | anbi1d |  |-  ( N = ( # ` z ) -> ( ( k e. ( 0 ... N ) /\ y = ( z cyclShift k ) ) <-> ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( k e. ( 0 ... N ) /\ y = ( z cyclShift k ) ) <-> ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) ) | 
						
							| 46 | 42 45 | anbi12d |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( ( m e. ( 0 ... N ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... N ) /\ y = ( z cyclShift k ) ) ) <-> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... ( # ` z ) ) /\ y = ( z cyclShift k ) ) ) ) ) | 
						
							| 47 | 35 | rexeqdv |  |-  ( N = ( # ` z ) -> ( E. n e. ( 0 ... N ) x = ( z cyclShift n ) <-> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( E. n e. ( 0 ... N ) x = ( z cyclShift n ) <-> E. n e. ( 0 ... ( # ` z ) ) x = ( z cyclShift n ) ) ) | 
						
							| 49 | 34 46 48 | 3imtr4d |  |-  ( ( N = ( # ` z ) /\ ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) ) -> ( ( ( m e. ( 0 ... N ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... N ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 50 | 28 49 | mpancom |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( ( m e. ( 0 ... N ) /\ x = ( y cyclShift m ) ) /\ ( k e. ( 0 ... N ) /\ y = ( z cyclShift k ) ) ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 51 | 50 | exp5l |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( m e. ( 0 ... N ) -> ( x = ( y cyclShift m ) -> ( k e. ( 0 ... N ) -> ( y = ( z cyclShift k ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) ) ) | 
						
							| 52 | 51 | imp41 |  |-  ( ( ( ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) /\ m e. ( 0 ... N ) ) /\ x = ( y cyclShift m ) ) /\ k e. ( 0 ... N ) ) -> ( y = ( z cyclShift k ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 53 | 52 | rexlimdva |  |-  ( ( ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) /\ m e. ( 0 ... N ) ) /\ x = ( y cyclShift m ) ) -> ( E. k e. ( 0 ... N ) y = ( z cyclShift k ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) /\ m e. ( 0 ... N ) ) -> ( x = ( y cyclShift m ) -> ( E. k e. ( 0 ... N ) y = ( z cyclShift k ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 55 | 54 | rexlimdva |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( E. m e. ( 0 ... N ) x = ( y cyclShift m ) -> ( E. k e. ( 0 ... N ) y = ( z cyclShift k ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 56 | 21 55 | syl7bi |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( E. m e. ( 0 ... N ) x = ( y cyclShift m ) -> ( E. n e. ( 0 ... N ) y = ( z cyclShift n ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 57 | 18 56 | biimtrid |  |-  ( ( ( ( x e. W /\ y e. W ) /\ z e. W ) /\ ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( E. n e. ( 0 ... N ) y = ( z cyclShift n ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 58 | 57 | exp31 |  |-  ( ( x e. W /\ y e. W ) -> ( z e. W -> ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( E. n e. ( 0 ... N ) y = ( z cyclShift n ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) ) ) | 
						
							| 59 | 58 | com15 |  |-  ( E. n e. ( 0 ... N ) y = ( z cyclShift n ) -> ( z e. W -> ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( x e. W /\ y e. W ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) ) ) | 
						
							| 60 | 59 | impcom |  |-  ( ( z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( x e. W /\ y e. W ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) ) | 
						
							| 61 | 60 | 3adant1 |  |-  ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( x e. W /\ y e. W ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) ) | 
						
							| 62 | 61 | impcom |  |-  ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( x e. W /\ y e. W ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 63 | 62 | com13 |  |-  ( ( x e. W /\ y e. W ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 64 | 63 | 3impia |  |-  ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 65 | 64 | impcom |  |-  ( ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) /\ ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) -> E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) | 
						
							| 66 | 14 15 65 | 3jca |  |-  ( ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) /\ ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) -> ( x e. W /\ z e. W /\ E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) | 
						
							| 67 | 1 2 | erclwwlkneq |  |-  ( ( x e. _V /\ z e. _V ) -> ( x .~ z <-> ( x e. W /\ z e. W /\ E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 68 | 67 | 3adant2 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ z <-> ( x e. W /\ z e. W /\ E. n e. ( 0 ... N ) x = ( z cyclShift n ) ) ) ) | 
						
							| 69 | 66 68 | syl5ibrcom |  |-  ( ( ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) /\ ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) ) /\ ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) -> ( ( x e. _V /\ y e. _V /\ z e. _V ) -> x .~ z ) ) | 
						
							| 70 | 69 | exp31 |  |-  ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( x e. _V /\ y e. _V /\ z e. _V ) -> x .~ z ) ) ) ) | 
						
							| 71 | 70 | com24 |  |-  ( ( ( # ` y ) = ( # ` z ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> x .~ z ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( # ` y ) = ( # ` z ) -> ( ( # ` x ) = ( # ` y ) -> ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> x .~ z ) ) ) ) ) | 
						
							| 73 | 72 | com4t |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( # ` y ) = ( # ` z ) -> ( ( # ` x ) = ( # ` y ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> x .~ z ) ) ) ) ) | 
						
							| 74 | 13 73 | sylbid |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ y -> ( ( # ` y ) = ( # ` z ) -> ( ( # ` x ) = ( # ` y ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> x .~ z ) ) ) ) ) | 
						
							| 75 | 74 | com25 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( ( y e. W /\ z e. W /\ E. n e. ( 0 ... N ) y = ( z cyclShift n ) ) -> ( ( # ` y ) = ( # ` z ) -> ( ( # ` x ) = ( # ` y ) -> ( x .~ y -> x .~ z ) ) ) ) ) | 
						
							| 76 | 11 75 | sylbid |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( y .~ z -> ( ( # ` y ) = ( # ` z ) -> ( ( # ` x ) = ( # ` y ) -> ( x .~ y -> x .~ z ) ) ) ) ) | 
						
							| 77 | 9 76 | mpdd |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( y .~ z -> ( ( # ` x ) = ( # ` y ) -> ( x .~ y -> x .~ z ) ) ) ) | 
						
							| 78 | 77 | com24 |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ y -> ( ( # ` x ) = ( # ` y ) -> ( y .~ z -> x .~ z ) ) ) ) | 
						
							| 79 | 7 78 | mpdd |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( x .~ y -> ( y .~ z -> x .~ z ) ) ) | 
						
							| 80 | 79 | impd |  |-  ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ( ( x .~ y /\ y .~ z ) -> x .~ z ) ) | 
						
							| 81 | 3 4 5 80 | mp3an |  |-  ( ( x .~ y /\ y .~ z ) -> x .~ z ) |