| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 |  | eleq1 |  |-  ( t = T -> ( t e. W <-> T e. W ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( t = T /\ u = U ) -> ( t e. W <-> T e. W ) ) | 
						
							| 5 |  | eleq1 |  |-  ( u = U -> ( u e. W <-> U e. W ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( t = T /\ u = U ) -> ( u e. W <-> U e. W ) ) | 
						
							| 7 |  | simpl |  |-  ( ( t = T /\ u = U ) -> t = T ) | 
						
							| 8 |  | oveq1 |  |-  ( u = U -> ( u cyclShift n ) = ( U cyclShift n ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( t = T /\ u = U ) -> ( u cyclShift n ) = ( U cyclShift n ) ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( ( t = T /\ u = U ) -> ( t = ( u cyclShift n ) <-> T = ( U cyclShift n ) ) ) | 
						
							| 11 | 10 | rexbidv |  |-  ( ( t = T /\ u = U ) -> ( E. n e. ( 0 ... N ) t = ( u cyclShift n ) <-> E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) | 
						
							| 12 | 4 6 11 | 3anbi123d |  |-  ( ( t = T /\ u = U ) -> ( ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) | 
						
							| 13 | 12 2 | brabga |  |-  ( ( T e. X /\ U e. Y ) -> ( T .~ U <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) |