| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 | 1 2 | erclwwlkneq |  |-  ( ( T e. X /\ U e. Y ) -> ( T .~ U <-> ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( T = ( U cyclShift n ) -> ( # ` T ) = ( # ` ( U cyclShift n ) ) ) | 
						
							| 5 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 6 | 5 | clwwlknwrd |  |-  ( U e. ( N ClWWalksN G ) -> U e. Word ( Vtx ` G ) ) | 
						
							| 7 | 6 1 | eleq2s |  |-  ( U e. W -> U e. Word ( Vtx ` G ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( T e. W /\ U e. W ) -> U e. Word ( Vtx ` G ) ) | 
						
							| 9 |  | elfzelz |  |-  ( n e. ( 0 ... N ) -> n e. ZZ ) | 
						
							| 10 |  | cshwlen |  |-  ( ( U e. Word ( Vtx ` G ) /\ n e. ZZ ) -> ( # ` ( U cyclShift n ) ) = ( # ` U ) ) | 
						
							| 11 | 8 9 10 | syl2an |  |-  ( ( ( T e. W /\ U e. W ) /\ n e. ( 0 ... N ) ) -> ( # ` ( U cyclShift n ) ) = ( # ` U ) ) | 
						
							| 12 | 4 11 | sylan9eqr |  |-  ( ( ( ( T e. W /\ U e. W ) /\ n e. ( 0 ... N ) ) /\ T = ( U cyclShift n ) ) -> ( # ` T ) = ( # ` U ) ) | 
						
							| 13 | 12 | rexlimdva2 |  |-  ( ( T e. W /\ U e. W ) -> ( E. n e. ( 0 ... N ) T = ( U cyclShift n ) -> ( # ` T ) = ( # ` U ) ) ) | 
						
							| 14 | 13 | 3impia |  |-  ( ( T e. W /\ U e. W /\ E. n e. ( 0 ... N ) T = ( U cyclShift n ) ) -> ( # ` T ) = ( # ` U ) ) | 
						
							| 15 | 3 14 | biimtrdi |  |-  ( ( T e. X /\ U e. Y ) -> ( T .~ U -> ( # ` T ) = ( # ` U ) ) ) |