| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 |  | df-3an |  |-  ( ( x e. W /\ x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) <-> ( ( x e. W /\ x e. W ) /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 4 |  | anidm |  |-  ( ( x e. W /\ x e. W ) <-> x e. W ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( ( x e. W /\ x e. W ) /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) <-> ( x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 6 | 3 5 | bitri |  |-  ( ( x e. W /\ x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) <-> ( x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 7 | 1 2 | erclwwlkneq |  |-  ( ( x e. _V /\ x e. _V ) -> ( x .~ x <-> ( x e. W /\ x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) ) | 
						
							| 8 | 7 | el2v |  |-  ( x .~ x <-> ( x e. W /\ x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 10 | 9 | clwwlknwrd |  |-  ( x e. ( N ClWWalksN G ) -> x e. Word ( Vtx ` G ) ) | 
						
							| 11 |  | clwwlknnn |  |-  ( x e. ( N ClWWalksN G ) -> N e. NN ) | 
						
							| 12 |  | cshw0 |  |-  ( x e. Word ( Vtx ` G ) -> ( x cyclShift 0 ) = x ) | 
						
							| 13 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 14 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( N e. NN -> 0 e. ( 0 ... N ) ) | 
						
							| 16 |  | eqcom |  |-  ( ( x cyclShift 0 ) = x <-> x = ( x cyclShift 0 ) ) | 
						
							| 17 | 16 | biimpi |  |-  ( ( x cyclShift 0 ) = x -> x = ( x cyclShift 0 ) ) | 
						
							| 18 |  | oveq2 |  |-  ( n = 0 -> ( x cyclShift n ) = ( x cyclShift 0 ) ) | 
						
							| 19 | 18 | rspceeqv |  |-  ( ( 0 e. ( 0 ... N ) /\ x = ( x cyclShift 0 ) ) -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) | 
						
							| 20 | 15 17 19 | syl2anr |  |-  ( ( ( x cyclShift 0 ) = x /\ N e. NN ) -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) | 
						
							| 21 | 20 | ex |  |-  ( ( x cyclShift 0 ) = x -> ( N e. NN -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 22 | 12 21 | syl |  |-  ( x e. Word ( Vtx ` G ) -> ( N e. NN -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 23 | 10 11 22 | sylc |  |-  ( x e. ( N ClWWalksN G ) -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) | 
						
							| 24 | 23 1 | eleq2s |  |-  ( x e. W -> E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) | 
						
							| 25 | 24 | pm4.71i |  |-  ( x e. W <-> ( x e. W /\ E. n e. ( 0 ... N ) x = ( x cyclShift n ) ) ) | 
						
							| 26 | 6 8 25 | 3bitr4ri |  |-  ( x e. W <-> x .~ x ) |