| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 |  | df-3an | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 4 |  | anidm | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  ↔  𝑥  ∈  𝑊 ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 6 | 3 5 | bitri | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 7 | 1 2 | erclwwlkneq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 8 | 7 | el2v | ⊢ ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 10 | 9 | clwwlknwrd | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 |  | clwwlknnn | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑁  ∈  ℕ ) | 
						
							| 12 |  | cshw0 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑥  cyclShift  0 )  =  𝑥 ) | 
						
							| 13 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 16 |  | eqcom | ⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  ↔  𝑥  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 17 | 16 | biimpi | ⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  →  𝑥  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  0 ) ) | 
						
							| 19 | 18 | rspceeqv | ⊢ ( ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑥  =  ( 𝑥  cyclShift  0 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 20 | 15 17 19 | syl2anr | ⊢ ( ( ( 𝑥  cyclShift  0 )  =  𝑥  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  →  ( 𝑁  ∈  ℕ  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 22 | 12 21 | syl | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑁  ∈  ℕ  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 23 | 10 11 22 | sylc | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 24 | 23 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑊  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 25 | 24 | pm4.71i | ⊢ ( 𝑥  ∈  𝑊  ↔  ( 𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 26 | 6 8 25 | 3bitr4ri | ⊢ ( 𝑥  ∈  𝑊  ↔  𝑥  ∼  𝑥 ) |