| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 | 1 2 | erclwwlkneqlen | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 4 | 1 2 | erclwwlkneq | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) ) ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∈  𝑊 ) | 
						
							| 6 |  | simpl1 | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑥  ∈  𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 | 7 | clwwlknbp | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 9 |  | eqcom | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  ↔  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 11 | 8 10 | simpl2im | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 12 | 11 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑊  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 15 | 7 | clwwlknwrd | ⊢ ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 1 | eleq2s | ⊢ ( 𝑦  ∈  𝑊  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  𝑦  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 20 |  | simprr | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 21 | 19 20 | cshwcshid | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 0 ... 𝑁 )  =  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 0 ... ( ♯ ‘ 𝑥 ) )  =  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( 0 ... ( ♯ ‘ 𝑥 ) )  =  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 25 | 22 24 | sylan9eq | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( 0 ... 𝑁 )  =  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 26 | anbi1d | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑛  ∈  ( 0 ... 𝑁 )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ↔  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) ) ) ) | 
						
							| 28 | 22 | adantr | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( 0 ... 𝑁 )  =  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 29 | 28 | rexeqdv | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 30 | 21 27 29 | 3imtr4d | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑛  ∈  ( 0 ... 𝑁 )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 31 | 14 30 | mpancom | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑛  ∈  ( 0 ... 𝑁 )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 32 | 31 | expd | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  →  ( 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 33 | 32 | rexlimdv | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 35 | 34 | com23 | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) ) | 
						
							| 36 | 35 | 3impia | ⊢ ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 40 | 39 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 41 | 37 40 | sylibr | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 42 | 5 6 41 | 3jca | ⊢ ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 43 | 1 2 | erclwwlkneq | ⊢ ( ( 𝑦  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 44 | 43 | ancoms | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 45 | 42 44 | imbitrrid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  𝑦  ∼  𝑥 ) ) | 
						
							| 46 | 45 | expd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑦  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  𝑦  ∼  𝑥 ) ) ) | 
						
							| 47 | 4 46 | sylbid | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  𝑦  ∼  𝑥 ) ) ) | 
						
							| 48 | 3 47 | mpdd | ⊢ ( ( 𝑥  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑥  ∼  𝑦  →  𝑦  ∼  𝑥 ) ) | 
						
							| 49 | 48 | el2v | ⊢ ( 𝑥  ∼  𝑦  →  𝑦  ∼  𝑥 ) |