Metamath Proof Explorer


Theorem clwwlknwrd

Description: A closed walk of a fixed length as word is a word over the vertices. (Contributed by AV, 30-Apr-2021)

Ref Expression
Hypothesis clwwlknwrd.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clwwlknwrd ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isclwwlkn ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) )
3 1 clwwlkbp ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) )
4 3 simp2d ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑊 ∈ Word 𝑉 )
5 4 adantr ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 ∈ Word 𝑉 )
6 2 5 sylbi ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 )