Metamath Proof Explorer


Theorem clwwlknwrd

Description: A closed walk of a fixed length as word is a word over the vertices. (Contributed by AV, 30-Apr-2021)

Ref Expression
Hypothesis clwwlknwrd.v V=VtxG
Assertion clwwlknwrd WNClWWalksNGWWordV

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v V=VtxG
2 isclwwlkn WNClWWalksNGWClWWalksGW=N
3 1 clwwlkbp WClWWalksGGVWWordVW
4 3 simp2d WClWWalksGWWordV
5 4 adantr WClWWalksGW=NWWordV
6 2 5 sylbi WNClWWalksNGWWordV