Metamath Proof Explorer


Definition df-clwwlkn

Description: Define the set of all closed walks of a fixed length n as words over the set of vertices in a graph g . If 0 < n , such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks . For n = 0 , the set is empty, see clwwlkn0 . (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion df-clwwlkn ClWWalksN=n0,gVwClWWalksg|w=n

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclwwlkn classClWWalksN
1 vn setvarn
2 cn0 class0
3 vg setvarg
4 cvv classV
5 vw setvarw
6 cclwwlk classClWWalks
7 3 cv setvarg
8 7 6 cfv classClWWalksg
9 chash class.
10 5 cv setvarw
11 10 9 cfv classw
12 1 cv setvarn
13 11 12 wceq wffw=n
14 13 5 8 crab classwClWWalksg|w=n
15 1 3 2 4 14 cmpo classn0,gVwClWWalksg|w=n
16 0 15 wceq wffClWWalksN=n0,gVwClWWalksg|w=n