Metamath Proof Explorer


Theorem clwwlkn0

Description: There is no closed walk of length 0 (i.e. a closed walk without any edge) represented by a word of vertices. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion clwwlkn0 0ClWWalksNG=

Proof

Step Hyp Ref Expression
1 clwwlkn 0ClWWalksNG=wClWWalksG|w=0
2 rabeq0 wClWWalksG|w=0=wClWWalksG¬w=0
3 0re 0
4 3 ltnri ¬0<0
5 breq2 w=00<w0<0
6 4 5 mtbiri w=0¬0<w
7 clwwlkgt0 wClWWalksG0<w
8 6 7 nsyl3 wClWWalksG¬w=0
9 2 8 mprgbir wClWWalksG|w=0=
10 1 9 eqtri 0ClWWalksNG=