Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) |
2 |
|
erclwwlkn.r |
⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } |
3 |
1 2
|
erclwwlkneq |
⊢ ( ( 𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑇 ∼ 𝑈 ↔ ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑇 = ( 𝑈 cyclShift 𝑛 ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑇 = ( 𝑈 cyclShift 𝑛 ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝑈 cyclShift 𝑛 ) ) ) |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
6 |
5
|
clwwlknwrd |
⊢ ( 𝑈 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑈 ∈ Word ( Vtx ‘ 𝐺 ) ) |
7 |
6 1
|
eleq2s |
⊢ ( 𝑈 ∈ 𝑊 → 𝑈 ∈ Word ( Vtx ‘ 𝐺 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ) → 𝑈 ∈ Word ( Vtx ‘ 𝐺 ) ) |
9 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
10 |
|
cshwlen |
⊢ ( ( 𝑈 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ℤ ) → ( ♯ ‘ ( 𝑈 cyclShift 𝑛 ) ) = ( ♯ ‘ 𝑈 ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 𝑈 cyclShift 𝑛 ) ) = ( ♯ ‘ 𝑈 ) ) |
12 |
4 11
|
sylan9eqr |
⊢ ( ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑇 = ( 𝑈 cyclShift 𝑛 ) ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑈 ) ) |
13 |
12
|
rexlimdva2 |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ) → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑇 = ( 𝑈 cyclShift 𝑛 ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑈 ) ) ) |
14 |
13
|
3impia |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑇 = ( 𝑈 cyclShift 𝑛 ) ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑈 ) ) |
15 |
3 14
|
syl6bi |
⊢ ( ( 𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑇 ∼ 𝑈 → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑈 ) ) ) |