Metamath Proof Explorer


Theorem erclwwlkneqlen

Description: If two classes are equivalent regarding .~ , then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w W = N ClWWalksN G
erclwwlkn.r ˙ = t u | t W u W n 0 N t = u cyclShift n
Assertion erclwwlkneqlen T X U Y T ˙ U T = U

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W = N ClWWalksN G
2 erclwwlkn.r ˙ = t u | t W u W n 0 N t = u cyclShift n
3 1 2 erclwwlkneq T X U Y T ˙ U T W U W n 0 N T = U cyclShift n
4 fveq2 T = U cyclShift n T = U cyclShift n
5 eqid Vtx G = Vtx G
6 5 clwwlknwrd U N ClWWalksN G U Word Vtx G
7 6 1 eleq2s U W U Word Vtx G
8 7 adantl T W U W U Word Vtx G
9 elfzelz n 0 N n
10 cshwlen U Word Vtx G n U cyclShift n = U
11 8 9 10 syl2an T W U W n 0 N U cyclShift n = U
12 4 11 sylan9eqr T W U W n 0 N T = U cyclShift n T = U
13 12 rexlimdva2 T W U W n 0 N T = U cyclShift n T = U
14 13 3impia T W U W n 0 N T = U cyclShift n T = U
15 3 14 syl6bi T X U Y T ˙ U T = U