| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwcshid.1 | ⊢ ( 𝜑  →  𝑦  ∈  Word  𝑉 ) | 
						
							| 2 |  | cshwcshid.2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 3 |  | fznn0sub2 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 0 ... ( ♯ ‘ 𝑥 ) )  =  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ↔  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) ) ) | 
						
							| 6 | 3 5 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 )  →  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 6 2 | syl11 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝜑  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( 𝜑  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 8 | impcom | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  𝑦  ∈  Word  𝑉 ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 13 |  | elfz2nn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ↔  ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑦 )  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 14 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ0  →  ( ♯ ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 15 |  | nn0z | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℤ ) | 
						
							| 16 |  | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑦 )  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) | 
						
							| 17 | 14 15 16 | syl2anr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑦 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑦 )  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) | 
						
							| 19 | 13 18 | sylbi | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) | 
						
							| 21 | 10 12 20 | 3jca | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) ) | 
						
							| 22 | 1 21 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ ) ) | 
						
							| 23 |  | 2cshw | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑚  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ℤ )  →  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( 𝑦  cyclShift  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( 𝑦  cyclShift  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) ) | 
						
							| 25 |  | nn0cn | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℂ ) | 
						
							| 26 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝑦 )  ∈  ℕ0  →  ( ♯ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 27 | 25 26 | anim12i | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑦 )  ∈  ℕ0 )  →  ( 𝑚  ∈  ℂ  ∧  ( ♯ ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 28 | 27 | 3adant3 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( ♯ ‘ 𝑦 )  ∈  ℕ0  ∧  𝑚  ≤  ( ♯ ‘ 𝑦 ) )  →  ( 𝑚  ∈  ℂ  ∧  ( ♯ ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 29 | 13 28 | sylbi | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑚  ∈  ℂ  ∧  ( ♯ ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 30 |  | pncan3 | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( ♯ ‘ 𝑦 )  ∈  ℂ )  →  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  →  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑦  cyclShift  ( 𝑚  +  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) )  =  ( 𝑦  cyclShift  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 34 |  | cshwn | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( 𝑦  cyclShift  ( ♯ ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 35 | 1 34 | syl | ⊢ ( 𝜑  →  ( 𝑦  cyclShift  ( ♯ ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  ( 𝑦  cyclShift  ( ♯ ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 37 | 24 33 36 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) ) )  →  𝑦  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) | 
						
							| 38 | 37 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) )  →  𝑦  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  cyclShift  𝑚 )  →  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( 𝑥  =  ( 𝑦  cyclShift  𝑚 )  →  ( 𝑦  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  ↔  𝑦  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ( 𝑦  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  ↔  𝑦  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) )  →  ( 𝑦  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) )  ↔  𝑦  =  ( ( 𝑦  cyclShift  𝑚 )  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) ) | 
						
							| 43 | 38 42 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) )  →  𝑦  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑛  =  ( ( ♯ ‘ 𝑦 )  −  𝑚 )  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) ) | 
						
							| 45 | 44 | rspceeqv | ⊢ ( ( ( ( ♯ ‘ 𝑦 )  −  𝑚 )  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ∧  𝑦  =  ( 𝑥  cyclShift  ( ( ♯ ‘ 𝑦 )  −  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 46 | 9 43 45 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ( 0 ... ( ♯ ‘ 𝑦 ) )  ∧  𝑥  =  ( 𝑦  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) |