| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 3 |  | cshwcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉 ) | 
						
							| 4 |  | cshwlen | ⊢ ( ( ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 8 |  | zaddcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 10 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 12 | 2 6 11 | 3eqtr4d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ) ) | 
						
							| 13 | 6 2 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) )  ↔  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 16 | 3 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉 ) | 
						
							| 18 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 2 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0 ..^ ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ↔  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 21 | 20 | biimpar | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) ) | 
						
							| 22 |  | cshwidxmod | ⊢ ( ( ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  𝑀 ) ‘ ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) ) ) | 
						
							| 23 | 17 18 21 22 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  𝑀 ) ‘ ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) ) ) | 
						
							| 24 |  | simpl1 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 25 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 26 |  | elfzo0 | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑖  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 27 |  | nn0z | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℤ ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑖  ∈  ℤ ) | 
						
							| 29 |  | simpr3 | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℤ ) | 
						
							| 30 | 28 29 | zaddcld | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑖  +  𝑁 )  ∈  ℤ ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 32 | 30 31 | jca | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 34 | 33 | 3adant3 | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑖  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 35 | 26 34 | sylbi | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) ) | 
						
							| 36 | 35 | impcom | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 37 |  | zmodfzo | ⊢ ( ( ( 𝑖  +  𝑁 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 39 | 1 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  =  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ )  →  ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 43 | 38 42 | mpbird | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 44 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑀 ) ‘ ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) )  =  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 45 | 24 25 43 44 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑀 ) ‘ ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) ) )  =  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 46 |  | nn0re | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℝ ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑖  ∈  ℝ ) | 
						
							| 48 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 49 | 48 | ad2antll | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℝ ) | 
						
							| 50 | 47 49 | readdcld | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑖  +  𝑁 )  ∈  ℝ ) | 
						
							| 51 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑀  ∈  ℝ ) | 
						
							| 53 |  | nnrp | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ+ ) | 
						
							| 55 |  | modaddmod | ⊢ ( ( ( 𝑖  +  𝑁 )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ+ )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( 𝑖  +  𝑁 )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 56 | 50 52 54 55 | syl3anc | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( 𝑖  +  𝑁 )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 57 |  | nn0cn | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℂ ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑖  ∈  ℂ ) | 
						
							| 59 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑀  ∈  ℂ ) | 
						
							| 61 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 62 | 61 | ad2antll | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 63 |  | add32r | ⊢ ( ( 𝑖  ∈  ℂ  ∧  𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑖  +  ( 𝑀  +  𝑁 ) )  =  ( ( 𝑖  +  𝑁 )  +  𝑀 ) ) | 
						
							| 64 | 58 60 62 63 | syl3anc | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑖  +  ( 𝑀  +  𝑁 ) )  =  ( ( 𝑖  +  𝑁 )  +  𝑀 ) ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( 𝑖  +  𝑁 )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 66 | 56 65 | eqtr4d | ⊢ ( ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 68 | 67 | 3adant3 | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑖  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 69 | 26 68 | sylbi | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 70 | 69 | impcom | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 71 | 70 | 3adantl1 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 73 | 2 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  =  ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  +  𝑀 )  =  ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 ) ) | 
						
							| 76 | 75 | fvoveq1d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 77 | 9 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 78 |  | simpr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 79 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 80 | 24 77 78 79 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑀  +  𝑁 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 81 | 72 76 80 | 3eqtr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( ( ( ( 𝑖  +  𝑁 )  mod  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) ) )  +  𝑀 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) | 
						
							| 82 | 23 45 81 | 3eqtrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) | 
						
							| 83 | 82 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) ) | 
						
							| 84 | 15 83 | sylbid | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) ) | 
						
							| 85 | 84 | ralrimiv | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) ) ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) | 
						
							| 86 |  | cshwcl | ⊢ ( ( 𝑊  cyclShift  𝑀 )  ∈  Word  𝑉  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 87 | 3 86 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 88 |  | cshwcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  ∈  Word  𝑉 ) | 
						
							| 89 |  | eqwrd | ⊢ ( ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  ∈  Word  𝑉  ∧  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  ∈  Word  𝑉 )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  ↔  ( ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) ) ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) ) ) | 
						
							| 90 | 87 88 89 | syl2anc | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  ↔  ( ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) ) ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) ) ) | 
						
							| 91 | 90 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  ↔  ( ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) ) ( ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ‘ 𝑖 )  =  ( ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ‘ 𝑖 ) ) ) ) | 
						
							| 92 | 12 85 91 | mpbir2and | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ) |