| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwcshid.1 |  |-  ( ph -> y e. Word V ) | 
						
							| 2 |  | cshwcshid.2 |  |-  ( ph -> ( # ` x ) = ( # ` y ) ) | 
						
							| 3 |  | fznn0sub2 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( ( # ` y ) - m ) e. ( 0 ... ( # ` y ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( ( # ` x ) = ( # ` y ) -> ( 0 ... ( # ` x ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ( # ` x ) = ( # ` y ) -> ( ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) <-> ( ( # ` y ) - m ) e. ( 0 ... ( # ` y ) ) ) ) | 
						
							| 6 | 3 5 | imbitrrid |  |-  ( ( # ` x ) = ( # ` y ) -> ( m e. ( 0 ... ( # ` y ) ) -> ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 7 | 6 2 | syl11 |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( ph -> ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( ph -> ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 9 | 8 | impcom |  |-  ( ( ph /\ ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) -> ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( y e. Word V /\ m e. ( 0 ... ( # ` y ) ) ) -> y e. Word V ) | 
						
							| 11 |  | elfzelz |  |-  ( m e. ( 0 ... ( # ` y ) ) -> m e. ZZ ) | 
						
							| 12 | 11 | adantl |  |-  ( ( y e. Word V /\ m e. ( 0 ... ( # ` y ) ) ) -> m e. ZZ ) | 
						
							| 13 |  | elfz2nn0 |  |-  ( m e. ( 0 ... ( # ` y ) ) <-> ( m e. NN0 /\ ( # ` y ) e. NN0 /\ m <_ ( # ` y ) ) ) | 
						
							| 14 |  | nn0z |  |-  ( ( # ` y ) e. NN0 -> ( # ` y ) e. ZZ ) | 
						
							| 15 |  | nn0z |  |-  ( m e. NN0 -> m e. ZZ ) | 
						
							| 16 |  | zsubcl |  |-  ( ( ( # ` y ) e. ZZ /\ m e. ZZ ) -> ( ( # ` y ) - m ) e. ZZ ) | 
						
							| 17 | 14 15 16 | syl2anr |  |-  ( ( m e. NN0 /\ ( # ` y ) e. NN0 ) -> ( ( # ` y ) - m ) e. ZZ ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( m e. NN0 /\ ( # ` y ) e. NN0 /\ m <_ ( # ` y ) ) -> ( ( # ` y ) - m ) e. ZZ ) | 
						
							| 19 | 13 18 | sylbi |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( ( # ` y ) - m ) e. ZZ ) | 
						
							| 20 | 19 | adantl |  |-  ( ( y e. Word V /\ m e. ( 0 ... ( # ` y ) ) ) -> ( ( # ` y ) - m ) e. ZZ ) | 
						
							| 21 | 10 12 20 | 3jca |  |-  ( ( y e. Word V /\ m e. ( 0 ... ( # ` y ) ) ) -> ( y e. Word V /\ m e. ZZ /\ ( ( # ` y ) - m ) e. ZZ ) ) | 
						
							| 22 | 1 21 | sylan |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> ( y e. Word V /\ m e. ZZ /\ ( ( # ` y ) - m ) e. ZZ ) ) | 
						
							| 23 |  | 2cshw |  |-  ( ( y e. Word V /\ m e. ZZ /\ ( ( # ` y ) - m ) e. ZZ ) -> ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) = ( y cyclShift ( m + ( ( # ` y ) - m ) ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) = ( y cyclShift ( m + ( ( # ` y ) - m ) ) ) ) | 
						
							| 25 |  | nn0cn |  |-  ( m e. NN0 -> m e. CC ) | 
						
							| 26 |  | nn0cn |  |-  ( ( # ` y ) e. NN0 -> ( # ` y ) e. CC ) | 
						
							| 27 | 25 26 | anim12i |  |-  ( ( m e. NN0 /\ ( # ` y ) e. NN0 ) -> ( m e. CC /\ ( # ` y ) e. CC ) ) | 
						
							| 28 | 27 | 3adant3 |  |-  ( ( m e. NN0 /\ ( # ` y ) e. NN0 /\ m <_ ( # ` y ) ) -> ( m e. CC /\ ( # ` y ) e. CC ) ) | 
						
							| 29 | 13 28 | sylbi |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( m e. CC /\ ( # ` y ) e. CC ) ) | 
						
							| 30 |  | pncan3 |  |-  ( ( m e. CC /\ ( # ` y ) e. CC ) -> ( m + ( ( # ` y ) - m ) ) = ( # ` y ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( m e. ( 0 ... ( # ` y ) ) -> ( m + ( ( # ` y ) - m ) ) = ( # ` y ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> ( m + ( ( # ` y ) - m ) ) = ( # ` y ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> ( y cyclShift ( m + ( ( # ` y ) - m ) ) ) = ( y cyclShift ( # ` y ) ) ) | 
						
							| 34 |  | cshwn |  |-  ( y e. Word V -> ( y cyclShift ( # ` y ) ) = y ) | 
						
							| 35 | 1 34 | syl |  |-  ( ph -> ( y cyclShift ( # ` y ) ) = y ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> ( y cyclShift ( # ` y ) ) = y ) | 
						
							| 37 | 24 33 36 | 3eqtrrd |  |-  ( ( ph /\ m e. ( 0 ... ( # ` y ) ) ) -> y = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) | 
						
							| 38 | 37 | adantrr |  |-  ( ( ph /\ ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) -> y = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) | 
						
							| 39 |  | oveq1 |  |-  ( x = ( y cyclShift m ) -> ( x cyclShift ( ( # ` y ) - m ) ) = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( x = ( y cyclShift m ) -> ( y = ( x cyclShift ( ( # ` y ) - m ) ) <-> y = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> ( y = ( x cyclShift ( ( # ` y ) - m ) ) <-> y = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) -> ( y = ( x cyclShift ( ( # ` y ) - m ) ) <-> y = ( ( y cyclShift m ) cyclShift ( ( # ` y ) - m ) ) ) ) | 
						
							| 43 | 38 42 | mpbird |  |-  ( ( ph /\ ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) -> y = ( x cyclShift ( ( # ` y ) - m ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( n = ( ( # ` y ) - m ) -> ( x cyclShift n ) = ( x cyclShift ( ( # ` y ) - m ) ) ) | 
						
							| 45 | 44 | rspceeqv |  |-  ( ( ( ( # ` y ) - m ) e. ( 0 ... ( # ` x ) ) /\ y = ( x cyclShift ( ( # ` y ) - m ) ) ) -> E. n e. ( 0 ... ( # ` x ) ) y = ( x cyclShift n ) ) | 
						
							| 46 | 9 43 45 | syl2anc |  |-  ( ( ph /\ ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) ) -> E. n e. ( 0 ... ( # ` x ) ) y = ( x cyclShift n ) ) | 
						
							| 47 | 46 | ex |  |-  ( ph -> ( ( m e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift m ) ) -> E. n e. ( 0 ... ( # ` x ) ) y = ( x cyclShift n ) ) ) |