| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 | 1 2 | erclwwlkneqlen |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y -> ( # ` x ) = ( # ` y ) ) ) | 
						
							| 4 | 1 2 | erclwwlkneq |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y <-> ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) ) ) | 
						
							| 5 |  | simpl2 |  |-  ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> y e. W ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> x e. W ) | 
						
							| 7 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 8 | 7 | clwwlknbp |  |-  ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) ) | 
						
							| 9 |  | eqcom |  |-  ( ( # ` x ) = N <-> N = ( # ` x ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( ( # ` x ) = N -> N = ( # ` x ) ) | 
						
							| 11 | 8 10 | simpl2im |  |-  ( x e. ( N ClWWalksN G ) -> N = ( # ` x ) ) | 
						
							| 12 | 11 1 | eleq2s |  |-  ( x e. W -> N = ( # ` x ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( x e. W /\ y e. W ) -> N = ( # ` x ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> N = ( # ` x ) ) | 
						
							| 15 | 7 | clwwlknwrd |  |-  ( y e. ( N ClWWalksN G ) -> y e. Word ( Vtx ` G ) ) | 
						
							| 16 | 15 1 | eleq2s |  |-  ( y e. W -> y e. Word ( Vtx ` G ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( x e. W /\ y e. W ) -> y e. Word ( Vtx ` G ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> y e. Word ( Vtx ` G ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> y e. Word ( Vtx ` G ) ) | 
						
							| 20 |  | simprr |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( # ` x ) = ( # ` y ) ) | 
						
							| 21 | 19 20 | cshwcshid |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( n e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift n ) ) -> E. m e. ( 0 ... ( # ` x ) ) y = ( x cyclShift m ) ) ) | 
						
							| 22 |  | oveq2 |  |-  ( N = ( # ` x ) -> ( 0 ... N ) = ( 0 ... ( # ` x ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( ( # ` x ) = ( # ` y ) -> ( 0 ... ( # ` x ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> ( 0 ... ( # ` x ) ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 25 | 22 24 | sylan9eq |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( 0 ... N ) = ( 0 ... ( # ` y ) ) ) | 
						
							| 26 | 25 | eleq2d |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( n e. ( 0 ... N ) <-> n e. ( 0 ... ( # ` y ) ) ) ) | 
						
							| 27 | 26 | anbi1d |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( n e. ( 0 ... N ) /\ x = ( y cyclShift n ) ) <-> ( n e. ( 0 ... ( # ` y ) ) /\ x = ( y cyclShift n ) ) ) ) | 
						
							| 28 | 22 | adantr |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( 0 ... N ) = ( 0 ... ( # ` x ) ) ) | 
						
							| 29 | 28 | rexeqdv |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( E. m e. ( 0 ... N ) y = ( x cyclShift m ) <-> E. m e. ( 0 ... ( # ` x ) ) y = ( x cyclShift m ) ) ) | 
						
							| 30 | 21 27 29 | 3imtr4d |  |-  ( ( N = ( # ` x ) /\ ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( n e. ( 0 ... N ) /\ x = ( y cyclShift n ) ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) | 
						
							| 31 | 14 30 | mpancom |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( n e. ( 0 ... N ) /\ x = ( y cyclShift n ) ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) | 
						
							| 32 | 31 | expd |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> ( n e. ( 0 ... N ) -> ( x = ( y cyclShift n ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) ) | 
						
							| 33 | 32 | rexlimdv |  |-  ( ( ( x e. W /\ y e. W ) /\ ( # ` x ) = ( # ` y ) ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( x e. W /\ y e. W ) -> ( ( # ` x ) = ( # ` y ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) ) | 
						
							| 35 | 34 | com23 |  |-  ( ( x e. W /\ y e. W ) -> ( E. n e. ( 0 ... N ) x = ( y cyclShift n ) -> ( ( # ` x ) = ( # ` y ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) ) | 
						
							| 36 | 35 | 3impia |  |-  ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( # ` x ) = ( # ` y ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) | 
						
							| 38 |  | oveq2 |  |-  ( n = m -> ( x cyclShift n ) = ( x cyclShift m ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( n = m -> ( y = ( x cyclShift n ) <-> y = ( x cyclShift m ) ) ) | 
						
							| 40 | 39 | cbvrexvw |  |-  ( E. n e. ( 0 ... N ) y = ( x cyclShift n ) <-> E. m e. ( 0 ... N ) y = ( x cyclShift m ) ) | 
						
							| 41 | 37 40 | sylibr |  |-  ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> E. n e. ( 0 ... N ) y = ( x cyclShift n ) ) | 
						
							| 42 | 5 6 41 | 3jca |  |-  ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> ( y e. W /\ x e. W /\ E. n e. ( 0 ... N ) y = ( x cyclShift n ) ) ) | 
						
							| 43 | 1 2 | erclwwlkneq |  |-  ( ( y e. _V /\ x e. _V ) -> ( y .~ x <-> ( y e. W /\ x e. W /\ E. n e. ( 0 ... N ) y = ( x cyclShift n ) ) ) ) | 
						
							| 44 | 43 | ancoms |  |-  ( ( x e. _V /\ y e. _V ) -> ( y .~ x <-> ( y e. W /\ x e. W /\ E. n e. ( 0 ... N ) y = ( x cyclShift n ) ) ) ) | 
						
							| 45 | 42 44 | imbitrrid |  |-  ( ( x e. _V /\ y e. _V ) -> ( ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) /\ ( # ` x ) = ( # ` y ) ) -> y .~ x ) ) | 
						
							| 46 | 45 | expd |  |-  ( ( x e. _V /\ y e. _V ) -> ( ( x e. W /\ y e. W /\ E. n e. ( 0 ... N ) x = ( y cyclShift n ) ) -> ( ( # ` x ) = ( # ` y ) -> y .~ x ) ) ) | 
						
							| 47 | 4 46 | sylbid |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y -> ( ( # ` x ) = ( # ` y ) -> y .~ x ) ) ) | 
						
							| 48 | 3 47 | mpdd |  |-  ( ( x e. _V /\ y e. _V ) -> ( x .~ y -> y .~ x ) ) | 
						
							| 49 | 48 | el2v |  |-  ( x .~ y -> y .~ x ) |