Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|
2 |
|
erclwwlkn.r |
|
3 |
1 2
|
erclwwlkneqlen |
|
4 |
1 2
|
erclwwlkneq |
|
5 |
|
simpl2 |
|
6 |
|
simpl1 |
|
7 |
|
eqid |
|
8 |
7
|
clwwlknbp |
|
9 |
|
eqcom |
|
10 |
9
|
biimpi |
|
11 |
8 10
|
simpl2im |
|
12 |
11 1
|
eleq2s |
|
13 |
12
|
adantr |
|
14 |
13
|
adantr |
|
15 |
7
|
clwwlknwrd |
|
16 |
15 1
|
eleq2s |
|
17 |
16
|
adantl |
|
18 |
17
|
adantr |
|
19 |
18
|
adantl |
|
20 |
|
simprr |
|
21 |
19 20
|
cshwcshid |
|
22 |
|
oveq2 |
|
23 |
|
oveq2 |
|
24 |
23
|
adantl |
|
25 |
22 24
|
sylan9eq |
|
26 |
25
|
eleq2d |
|
27 |
26
|
anbi1d |
|
28 |
22
|
adantr |
|
29 |
28
|
rexeqdv |
|
30 |
21 27 29
|
3imtr4d |
|
31 |
14 30
|
mpancom |
|
32 |
31
|
expd |
|
33 |
32
|
rexlimdv |
|
34 |
33
|
ex |
|
35 |
34
|
com23 |
|
36 |
35
|
3impia |
|
37 |
36
|
imp |
|
38 |
|
oveq2 |
|
39 |
38
|
eqeq2d |
|
40 |
39
|
cbvrexvw |
|
41 |
37 40
|
sylibr |
|
42 |
5 6 41
|
3jca |
|
43 |
1 2
|
erclwwlkneq |
|
44 |
43
|
ancoms |
|
45 |
42 44
|
syl5ibr |
|
46 |
45
|
expd |
|
47 |
4 46
|
sylbid |
|
48 |
3 47
|
mpdd |
|
49 |
48
|
el2v |
|