| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  | 
						
							| 2 |  | erclwwlkn.r |  | 
						
							| 3 |  | vex |  | 
						
							| 4 |  | vex |  | 
						
							| 5 |  | vex |  | 
						
							| 6 | 1 2 | erclwwlkneqlen |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 | 1 2 | erclwwlkneqlen |  | 
						
							| 9 | 8 | 3adant1 |  | 
						
							| 10 | 1 2 | erclwwlkneq |  | 
						
							| 11 | 10 | 3adant1 |  | 
						
							| 12 | 1 2 | erclwwlkneq |  | 
						
							| 13 | 12 | 3adant3 |  | 
						
							| 14 |  | simpr1 |  | 
						
							| 15 |  | simplr2 |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | eqeq2d |  | 
						
							| 18 | 17 | cbvrexvw |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | eqeq2d |  | 
						
							| 21 | 20 | cbvrexvw |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 22 | clwwlknbp |  | 
						
							| 24 |  | eqcom |  | 
						
							| 25 | 24 | biimpi |  | 
						
							| 26 | 23 25 | simpl2im |  | 
						
							| 27 | 26 1 | eleq2s |  | 
						
							| 28 | 27 | ad2antlr |  | 
						
							| 29 | 23 | simpld |  | 
						
							| 30 | 29 1 | eleq2s |  | 
						
							| 31 | 30 | ad2antlr |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | simprr |  | 
						
							| 34 | 32 33 | cshwcsh2id |  | 
						
							| 35 |  | oveq2 |  | 
						
							| 36 |  | oveq2 |  | 
						
							| 37 | 36 | eqcoms |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 35 39 | sylan9eq |  | 
						
							| 41 | 40 | eleq2d |  | 
						
							| 42 | 41 | anbi1d |  | 
						
							| 43 | 35 | eleq2d |  | 
						
							| 44 | 43 | anbi1d |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 42 45 | anbi12d |  | 
						
							| 47 | 35 | rexeqdv |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 34 46 48 | 3imtr4d |  | 
						
							| 50 | 28 49 | mpancom |  | 
						
							| 51 | 50 | exp5l |  | 
						
							| 52 | 51 | imp41 |  | 
						
							| 53 | 52 | rexlimdva |  | 
						
							| 54 | 53 | ex |  | 
						
							| 55 | 54 | rexlimdva |  | 
						
							| 56 | 21 55 | syl7bi |  | 
						
							| 57 | 18 56 | biimtrid |  | 
						
							| 58 | 57 | exp31 |  | 
						
							| 59 | 58 | com15 |  | 
						
							| 60 | 59 | impcom |  | 
						
							| 61 | 60 | 3adant1 |  | 
						
							| 62 | 61 | impcom |  | 
						
							| 63 | 62 | com13 |  | 
						
							| 64 | 63 | 3impia |  | 
						
							| 65 | 64 | impcom |  | 
						
							| 66 | 14 15 65 | 3jca |  | 
						
							| 67 | 1 2 | erclwwlkneq |  | 
						
							| 68 | 67 | 3adant2 |  | 
						
							| 69 | 66 68 | syl5ibrcom |  | 
						
							| 70 | 69 | exp31 |  | 
						
							| 71 | 70 | com24 |  | 
						
							| 72 | 71 | ex |  | 
						
							| 73 | 72 | com4t |  | 
						
							| 74 | 13 73 | sylbid |  | 
						
							| 75 | 74 | com25 |  | 
						
							| 76 | 11 75 | sylbid |  | 
						
							| 77 | 9 76 | mpdd |  | 
						
							| 78 | 77 | com24 |  | 
						
							| 79 | 7 78 | mpdd |  | 
						
							| 80 | 79 | impd |  | 
						
							| 81 | 3 4 5 80 | mp3an |  |