Metamath Proof Explorer


Theorem erclwwlkn

Description: .~ is an equivalence relation over the set of closed walks (defined as words) with a fixed length. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion erclwwlkn ˙ErW

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 1 2 erclwwlknrel Rel˙
4 1 2 erclwwlknsym x˙yy˙x
5 1 2 erclwwlkntr x˙yy˙zx˙z
6 1 2 erclwwlknref xWx˙x
7 3 4 5 6 iseri ˙ErW