Metamath Proof Explorer


Theorem erclwwlkn

Description: .~ is an equivalence relation over the set of closed walks (defined as words) with a fixed length. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w
|- W = ( N ClWWalksN G )
erclwwlkn.r
|- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) }
Assertion erclwwlkn
|- .~ Er W

Proof

Step Hyp Ref Expression
1 erclwwlkn.w
 |-  W = ( N ClWWalksN G )
2 erclwwlkn.r
 |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) }
3 1 2 erclwwlknrel
 |-  Rel .~
4 1 2 erclwwlknsym
 |-  ( x .~ y -> y .~ x )
5 1 2 erclwwlkntr
 |-  ( ( x .~ y /\ y .~ z ) -> x .~ z )
6 1 2 erclwwlknref
 |-  ( x e. W <-> x .~ x )
7 3 4 5 6 iseri
 |-  .~ Er W