Description: .~ is an equivalence relation over the set of closed walks (defined as words) with a fixed length. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
||
Assertion | erclwwlkn | |- .~ Er W |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
2 | erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
|
3 | 1 2 | erclwwlknrel | |- Rel .~ |
4 | 1 2 | erclwwlknsym | |- ( x .~ y -> y .~ x ) |
5 | 1 2 | erclwwlkntr | |- ( ( x .~ y /\ y .~ z ) -> x .~ z ) |
6 | 1 2 | erclwwlknref | |- ( x e. W <-> x .~ x ) |
7 | 3 4 5 6 | iseri | |- .~ Er W |