Description: .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
||
Assertion | erclwwlknrel | |- Rel .~ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
2 | erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
|
3 | 2 | relopabi | |- Rel .~ |