Description: .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | ⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) | |
erclwwlkn.r | ⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } | ||
Assertion | erclwwlknrel | ⊢ Rel ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | ⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) | |
2 | erclwwlkn.r | ⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } | |
3 | 2 | relopabi | ⊢ Rel ∼ |