| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 |  | clwwlknfi |  |-  ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) | 
						
							| 4 | 1 3 | eqeltrid |  |-  ( ( Vtx ` G ) e. Fin -> W e. Fin ) | 
						
							| 5 |  | pwfi |  |-  ( W e. Fin <-> ~P W e. Fin ) | 
						
							| 6 | 4 5 | sylib |  |-  ( ( Vtx ` G ) e. Fin -> ~P W e. Fin ) | 
						
							| 7 | 1 2 | erclwwlkn |  |-  .~ Er W | 
						
							| 8 | 7 | a1i |  |-  ( ( Vtx ` G ) e. Fin -> .~ Er W ) | 
						
							| 9 | 8 | qsss |  |-  ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) C_ ~P W ) | 
						
							| 10 | 6 9 | ssfid |  |-  ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) e. Fin ) |