Description: The quotient set of the set of closed walks (defined as words) with a fixed length according to the equivalence relation .~ is finite. (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
||
Assertion | qerclwwlknfi | |- ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) e. Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | |- W = ( N ClWWalksN G ) |
|
2 | erclwwlkn.r | |- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
|
3 | clwwlknfi | |- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) |
|
4 | 1 3 | eqeltrid | |- ( ( Vtx ` G ) e. Fin -> W e. Fin ) |
5 | pwfi | |- ( W e. Fin <-> ~P W e. Fin ) |
|
6 | 4 5 | sylib | |- ( ( Vtx ` G ) e. Fin -> ~P W e. Fin ) |
7 | 1 2 | erclwwlkn | |- .~ Er W |
8 | 7 | a1i | |- ( ( Vtx ` G ) e. Fin -> .~ Er W ) |
9 | 8 | qsss | |- ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) C_ ~P W ) |
10 | 6 9 | ssfid | |- ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) e. Fin ) |