| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 |  | clwwlknfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  ClWWalksN  𝐺 )  ∈  Fin ) | 
						
							| 4 | 1 3 | eqeltrid | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  𝑊  ∈  Fin ) | 
						
							| 5 |  | pwfi | ⊢ ( 𝑊  ∈  Fin  ↔  𝒫  𝑊  ∈  Fin ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  𝒫  𝑊  ∈  Fin ) | 
						
							| 7 | 1 2 | erclwwlkn | ⊢  ∼   Er  𝑊 | 
						
							| 8 | 7 | a1i | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →   ∼   Er  𝑊 ) | 
						
							| 9 | 8 | qsss | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑊  /   ∼  )  ⊆  𝒫  𝑊 ) | 
						
							| 10 | 6 9 | ssfid | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑊  /   ∼  )  ∈  Fin ) |