Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
| Assertion | qsss | ⊢ ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | elqs | ⊢ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = [ 𝑦 ] 𝑅 ) |
| 4 | 1 | ecss | ⊢ ( 𝜑 → [ 𝑦 ] 𝑅 ⊆ 𝐴 ) |
| 5 | sseq1 | ⊢ ( 𝑥 = [ 𝑦 ] 𝑅 → ( 𝑥 ⊆ 𝐴 ↔ [ 𝑦 ] 𝑅 ⊆ 𝐴 ) ) | |
| 6 | 4 5 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ⊆ 𝐴 ) ) |
| 7 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 8 | 6 7 | imbitrrdi | ⊢ ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 9 | 8 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 10 | 3 9 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 / 𝑅 ) → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 11 | 10 | ssrdv | ⊢ ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 ) |