Metamath Proof Explorer


Theorem qsss

Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis qsss.1 ( 𝜑𝑅 Er 𝐴 )
Assertion qsss ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 qsss.1 ( 𝜑𝑅 Er 𝐴 )
2 vex 𝑥 ∈ V
3 2 elqs ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑦𝐴 𝑥 = [ 𝑦 ] 𝑅 )
4 1 ecss ( 𝜑 → [ 𝑦 ] 𝑅𝐴 )
5 sseq1 ( 𝑥 = [ 𝑦 ] 𝑅 → ( 𝑥𝐴 ↔ [ 𝑦 ] 𝑅𝐴 ) )
6 4 5 syl5ibrcom ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅𝑥𝐴 ) )
7 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
8 6 7 syl6ibr ( 𝜑 → ( 𝑥 = [ 𝑦 ] 𝑅𝑥 ∈ 𝒫 𝐴 ) )
9 8 rexlimdvw ( 𝜑 → ( ∃ 𝑦𝐴 𝑥 = [ 𝑦 ] 𝑅𝑥 ∈ 𝒫 𝐴 ) )
10 3 9 syl5bi ( 𝜑 → ( 𝑥 ∈ ( 𝐴 / 𝑅 ) → 𝑥 ∈ 𝒫 𝐴 ) )
11 10 ssrdv ( 𝜑 → ( 𝐴 / 𝑅 ) ⊆ 𝒫 𝐴 )