| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsss.1 |
⊢ ( 𝜑 → 𝑅 Er 𝐴 ) |
| 2 |
|
qsss.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 3 |
|
uniqs |
⊢ ( 𝑅 ∈ 𝑉 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| 5 |
|
erdm |
⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → dom 𝑅 = 𝐴 ) |
| 7 |
6
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑅 “ dom 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| 8 |
4 7
|
eqtr4d |
⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ dom 𝑅 ) ) |
| 9 |
|
imadmrn |
⊢ ( 𝑅 “ dom 𝑅 ) = ran 𝑅 |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ran 𝑅 ) |
| 11 |
|
errn |
⊢ ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ran 𝑅 = 𝐴 ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = 𝐴 ) |