| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsss.1 |
|- ( ph -> R Er A ) |
| 2 |
|
qsss.2 |
|- ( ph -> R e. V ) |
| 3 |
|
uniqs |
|- ( R e. V -> U. ( A /. R ) = ( R " A ) ) |
| 4 |
2 3
|
syl |
|- ( ph -> U. ( A /. R ) = ( R " A ) ) |
| 5 |
|
erdm |
|- ( R Er A -> dom R = A ) |
| 6 |
1 5
|
syl |
|- ( ph -> dom R = A ) |
| 7 |
6
|
imaeq2d |
|- ( ph -> ( R " dom R ) = ( R " A ) ) |
| 8 |
4 7
|
eqtr4d |
|- ( ph -> U. ( A /. R ) = ( R " dom R ) ) |
| 9 |
|
imadmrn |
|- ( R " dom R ) = ran R |
| 10 |
8 9
|
eqtrdi |
|- ( ph -> U. ( A /. R ) = ran R ) |
| 11 |
|
errn |
|- ( R Er A -> ran R = A ) |
| 12 |
1 11
|
syl |
|- ( ph -> ran R = A ) |
| 13 |
10 12
|
eqtrd |
|- ( ph -> U. ( A /. R ) = A ) |